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Abstract 

Single‑cell chromatin accessibility has emerged as a powerful means of understanding the epigenetic landscape 
of diverse tissues and cell types, but profiling cells from many independent specimens is challenging and costly. Here 
we describe a novel approach, sciPlex‑ATAC‑seq, which uses unmodified DNA oligos as sample‑specific nuclear labels, 
enabling the concurrent profiling of chromatin accessibility within single nuclei from virtually unlimited specimens 
or experimental conditions. We first demonstrate our method with a chemical epigenomics screen, in which we 
identify drug‑altered distal regulatory sites predictive of compound‑ and dose‑dependent effects on transcription. We 
then analyze cell type‑specific chromatin changes in PBMCs from multiple donors responding to synthetic and allo‑
geneic immune stimulation. We quantify stimulation‑altered immune cell compositions and isolate the unique effects 
of allogeneic stimulation on chromatin accessibility specific to T‑lymphocytes. Finally, we observe that impaired global 
chromatin decondensation often coincides with chemical inhibition of allogeneic T‑cell activation.
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Introduction
Millions of candidate regulatory DNA elements have 
been identified within mammalian genomes, many of 
which are specifically active in particular tissues and cell 
types [1–3]. Yet how these elements function, includ-
ing how they respond to perturbation to modulate cells’ 
genetic programs, remains unclear. Moreover, given the 
importance of gene regulation in disease pathology, there 

is intense interest in therapeutic compounds targeting 
the epigenome or that modulate the activity of noncod-
ing DNA [4]. However, many of these compounds target 
enzymes that contribute to the regulation of most if not 
all genes in the genome. Understanding the cell-type spe-
cific mechanisms of action of such compounds in healthy 
and diseased contexts is very challenging. With some epi-
genetic drugs already being applied in clinical settings, 
there is an urgent need for improved understanding of 
how epigenome-modulating compounds control the 
activity of our noncoding DNA [4, 5].

Sequencing based approaches which assess accessible 
regions of the genome have been fundamental for map-
ping the non-coding regulatory regions of the genome 
[6]. Recent technological advances now enable assaying 
chromatin accessibility within single cells, thus resolv-
ing the chromatin states that comprise complex tissues 
and cell mixtures [3, 7]. Thus far, technical advances have 
focused on increasing the number of cells profiled in a 
single experiment [2, 8]. However, it is often prohibitively 
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expensive to perform these experiments on more than 
a few samples, with batch effects further complicating 
downstream analyses.

An increase in sample throughput would greatly 
broaden the applications for single cell genomic tech-
nologies. For instance, high throughput chemical screens 
(HTS) have been foundational in identifying candidate 
compounds which mitigate disease [9, 10]. Pairing HTSs 
with measurements of global gene expression in bulk 
[11, 12], or single cells [13–17], has improved the reso-
lution at which one can evaluate therapeutic responses. 
Furthermore, the ability to resolve molecular phenomena 
within single cells will be important in understanding 
the heterogeneous response to therapy seen within and 
between individuals and identifying the molecular deter-
minants of therapeutic resistance [18–20].

We recently introduced sciPlex, an inexpensive and 
robust strategy for multiplexing combinatorial indexing-
based single-cell RNA-seq experiments [17]. This strat-
egy (to which we refer here as ‘sciPlex-RNA-seq’) exploits 
a propensity for permeabilized nuclei to absorb unmodi-
fied single stranded DNA oligos of any sequence, referred 
to as hash labels. During sci-Plex-RNA-seq, permeabi-
lized cells or nuclei from distinct samples are incubated 
with unique hash labels (or combinations thereof ), which 
are then stabilized within nuclei through chemical fixa-
tion. These cells or nuclei are then sequenced using sci-
RNA-seq [21, 22], which recovers the hash labels for each 
cell along with its transcriptome.

Here, we extend the sciPlex multiplexing platform to 
combinatorial indexing-based chromatin accessibility 
profiling within single cells. We refer to this approach 
as sciPlex-ATAC-seq (Fig.  1a). Using this nuclear labe-
ling scheme, we first resolve treatments of cells from a 
pooled chemical screen and pair this information with 
their chromatin accessibility profiles. We further adapt 
this multiplexing strategy for highly scalable single cell 
accessibility profiling, which we apply to human mixed 
lymphocyte reactions (MLR) from multiple donors in 
combination with chemical perturbation. From these 
pooled assays we identify allogeneic-dependent chroma-
tin changes within activated T-lymphocytes, which are 
disrupted by immunosuppressive compounds.

Results
Hash labeling enables multiplexing of sciATAC‑seq samples
To capture poly-adenylated hash oligonucleotides 
within the context of sciATAC-seq, we modified the 
original sciATAC-seq protocol [23], to include an 
indexed primer extension step. The indexed extension 
of the hash oligos is followed by indexed transposition 
within the same well, creating a known pairing between 
well barcodes of hash oligos and tagmented chromatin. 

By design, extended hash oligos and tagmented chro-
matin possess Nextera P5 and P7 PCR handles. After 
tagmentation, nuclei are pooled, stained with DAPI, 
and flow-sorted into 96 well plates for crosslink rever-
sal and PCR. Amplification with indexed PCR prim-
ers adds an additional level of barcoding to both hash 
labels and accessible chromatin fragments. In sum, this 
strategy leverages unique combinations of well bar-
codes on hash and chromatin fragments to pair single 
cell chromatin profiles with their corresponding hash 
identifiers (Fig. 1b).

To determine the specificity of hash labeling, we per-
formed a species mixing experiment. A roughly equal 
number of freshly expanded NIH-3T3 cells (mouse) and 
A549 cells (human) were distributed to distinct wells of 
a 96-well v-bottom plate, where they were permeabilized 
and each species affixed with a different set of hashing 
oligos (Supp. Figure  1a). Upon library preparation and 
sequencing, we were able to accurately identify the spe-
cies of each recovered nuclei based on the top enriched 
hash label recovered (99%, n = 1696) (Fig. 1c). Moreover, 
half of the barcode collision events observed, which are 
identified by a mixture of human and mouse chromatin 
(doublets, etc.), could be readily identified by the pres-
ence of more than one enriched hash label (n = 127) 
(Fig. 1d). Moreover, a proportion of the doublets result-
ing from a barcode collision between two or more nuclei 
of the same species, were identified using the exogenous 
hash labels (n = 86).

By recovering many uniquely indexed hash molecules 
per nucleus, we can quantitatively assess label mixing 
across sciPlex experiments. Hash enrichment scores, 
which reflect the ratio of the most abundant label to the 
second most abundant molecule per recovered nucleus, 
revealed a 100-fold enrichment of top hashes on average, 
suggesting minimal label diffusion between nuclei during 
library preparation (Fig. 1e). In an effort to identify opti-
mal conditions for sciPlex-ATAC-seq, we examined vari-
ous permeabilization, hash-extension, and tagmentation 
conditions, all of which produced comparable quality 
sciATAC libraries and hash labeling (Supp. Figure 1a-d). 
While all tested conditions proved similar, and compat-
ible with hashing, the combination of CLB lysis and NEB 
(NEBNext High-Fidelity 2X PCR Master Mix)-based 
hash extension produced the highest number of nuclear 
fragments per cell and was thus used for subsequent two-
level indexing experiments. We also considered whether 
the fixation process might lead to increased intra-sample 
multiplets. By performing species mixing experiments 
where each cell line was either hashed and fixed sepa-
rately (post-mix), or hashed and fixed after combining 
the cell lines (pre-mix) we were able to compare the final 
observed collision rates. While the pre-mix sample did 
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produce a higher observed collision rate (pre = 23.9%, 
post = 14.7%), the collision rate was similar to the expec-
tation for this experiment (20%).

Multiplexed single‑cell ATAC profiles reveal drug‑specific 
and dose‑dependent changes in the chromatin landscape
The ability to pool many samples for parallel processing 
should reduce the potential for batch-to-batch variation, 
while simplifying the handling required for experiments 
with numerous conditions and/or replicates. We there-
fore sought to apply sciPlex-ATAC-seq to resolve chro-
matin profiles at single cell resolution in the context of a 
multi-compound chemical perturbation experiment.

For this chemical screen, we mirrored chemical per-
turbations we previously found to elicit diverse and 
dose-dependent effects on cells [17]. Selected com-
pounds included Dexamethasone (Dex), a glucocor-
ticoid receptor agonist, Vorinostat (SAHA), a broad 
spectrum histone deacetylase inhibitor, Nutlin-3A, an 
MDM2 inhibitor, which increases P53 activity [24], and 
BMS-345541 (BMS), an inhibitor of NFkB-dependent 
transcription. Human lung adenocarcinoma-derived 
cells (A549) were cultured in a 96-well dish and treated 
for 24  h with one of the four compounds at eight dif-
ferent concentrations covering three orders of mag-
nitude, including vehicle control only. Each condition 

Fig. 1 Single stranded DNA oligos label nuclei enabling sample multiplexing single nucleus chromatin accessibility profiling. a Experimental 
workflow. b Schematic of co‑assay strategy for label capture and chromatin accessibility profiling within individual nuclei through two‑level 
combinatorial indexing. c Scatter plot of mouse and human unique fragment counts for individual cells colored by co‑assayed nuclear hash 
labels for each nucleus. d Scatter plot of mouse and human unique fragment counts colored by doublet calls based on co‑assayed hash labels. 
e Histogram of hash label enrichment scores for each nucleus, where Enrichment Score = x/y, where x = counts for the most common hash label 
within a cell and y = the second most common hash label within a cell. For cells with only one hash ID, the enrichment score was set as the number 
of hash reads (to avoid infinite values)
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was also performed in triplicate (Fig.  2a). After remov-
ing low quality profiles (Supp. Figure  3a), we assigned 
treatment labels to all cells with at least 10 hash counts 
and a minimum of twofold label enrichment (Supp. Fig-
ure  3c,d). Hash enrichment ratios were notably lower 
than for the corresponding species mixing experiment 

(Fig. 1e), suggesting a reduced hash labeling efficiency in 
this experiment. In addition to removing doublets based 
on poor hash labeling, we applied a modified version 
of scrublet [2, 25] to identify and prune any remaining 
doublets (Supp. Figure 3b). After filtering, we recovered 
a total of 8,655 cells. The number of cells recovered was 

Fig. 2 Nuclear hashing enables scalable single‑cell epigenomics for high throughput chemical screens. a Schematic of chemical screen culture 
dish layout. b UMAP embedding of single cell chromatin profiles colored by drug treatment group labels. c Faceted UMAP embeddings of cells 
from each treatment group colored by relative dose labels. d Upset plot displaying the total number of DA sites identified in response to each drug 
and numbers of shared DA sites across treatment groups. e Heatmaps depicting up to 10 most significantly enriched motifs per drug within peaks 
found to open with treatment. f Browser tracks for cells aggregated by dose of the SAHA compound. The y‑axis represents read coverage ranging 
from 0—20 (normalized by reads within promoters for each group)
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strongly related to the dosage of each compound, with 
the exception of Dex (Supp. Figure  4a). Furthermore, 
based solely on the number of filtered cells recovered per 
condition, we were able to derive kill curves and estimate 
IC50 values for each compound, similar to those derived 
previously (Supp. Figure 5) [17]. While per-cell statistics 
such as hash recovery and total fragments per cell were 
largely consistent across conditions (Supp. Figure 4b, d), 
regressing TSS enrichment of chromatin fragments as a 
function of dose revealed a significant reduction upon 
exposure to BMS (coef = -0.36; p = 1.13e-48) and SAHA 
(coef = -0.14; p = 1.47e-13), indicating a more dispersed 
distribution of transposase insertion sites in the presence 
of these drugs (Supp. Figure 4c).

Upon dimensionality reduction of the scATAC pro-
files, cells reproducibly inhabited chromatin states largely 
defined by the drug treatment received (Fig.  2b, Supp. 
Figure  6a). Moreover, by labeling cells by the dosage of 
each drug exposure, we could investigate how the con-
centration of each compound affects the chromatin land-
scape. Cells treated with BMS showed chromatin states 
that abruptly diverged from vehicle treated cells at doses 
exceeding 1uM, possibly reflecting toxicity-induced 
effects. A Dex-induced chromatin state was attained 
even at the lowest concentrations examined, suggesting 
a more binary and stable impact of the corticosteroid 
mimic. And while Nutlin-3A induced very few detectable 
changes, SAHA treated cells exhibited a severe and dose-
dependent progression away from the vehicle-treated 
state (Fig. 2c).

Using clusters of various chromatin states identified 
with Monocle3 [22], we called de-novo peaks of accessi-
bility, identifying a total of 129,410 accessible sites across 
all conditions in our chemical screen (Supp. Figure 6b,c). 
To identify sites in our experiment with accessibility 
impacted by each chemical perturbation, we modeled the 
accessibility of each peak as a function of drug dose. We 
identified 2966 sites across the genome whose accessibil-
ity was significantly impacted by a chemical perturba-
tion in our experiment (promoters = 301, distal = 1232, 
intronic = 1223, exonic = 210) (Supp. Table S1). Interest-
ingly, the vast majority of differentially accessible sites 
were specific to just one compound, with the HDACi 
SAHA altering the most sites (opening = 890, closing = 
1142) (Fig. 2d).

To identify the sites that may be directly bound by the 
transcription factors (TFs) targeted by these compounds, 
we assessed the enrichment of TF binding elements 
within sites that significantly gained or lost accessibil-
ity in response to each compound (Fig.  2e and Supp. 
Figure  7). Confirming the known effect of dexametha-
sone in inducing nuclear localization and DNA binding 
of the glucocorticoid receptor (GR) [26], we found the 

binding site for GR (NR3C1) to be the most enriched 
motif within sites opening in response to Dex treatment 
(Fig.  2e). Notably, binding sites for androgen- (AR) and 
progesterone receptors (PGR) were also highly enriched 
in Dex-opening sites, likely owing to target sequence sim-
ilarities with GR [27]. Despite a limited global impact of 
Nutlin-3A on chromatin accessibility, the binding site for 
P53 (TP53) and homologs P63 and P73 were all among 
the top five most enriched elements within Nutlin-3A 
induced accessible sites, consistent with the drug’s role 
in activating P53 (Fig. 2e). Visually inspecting the acces-
sibility data grouped by treatment at significantly affected 
loci, supported the altered state of chromatin for each 
treatment (Fig. 2f, Supp. Figure 8). Together, these results 
point to unique and discernible effects of each tested 
compound on the chromatin landscape in ways which 
reflect the activity of targeted factors.

Dose‑dependent changes in the chromatin landscape 
reflect the transcriptional state of individual cells
We next applied an unsupervised, graph learning 
approach (Methods) [22, 28], to identify cells’ trajec-
tories through altered chromatin states as a function of 
the dose of each drug (Fig. 3a, Supp. Figure 8a,d,g). For 
each cell we defined a “pseudodose” as its position within 
the identified trajectory (Fig.  3a-c, Supp. Figure  8a-i). 
Cells treated with dexamethasone again exhibited one 
of two discrete chromatin states, with all tested doses of 
Dex producing similar changes in chromatin accessibil-
ity (Supp. Figure 9a-c). Across the Dex pseudodose axis, 
significantly Dex-affected regions were largely found to 
exhibit increasing (n = 312) or dynamic (n = 367) acces-
sibility (decreasing; n = 109) (Supp. Figure  10a,d), with 
increasingly accessible promoters and distal elements 
enriched for GR (NR3C1) motifs (Supp. Figure 10b,c).

We hypothesized that a cell’s chromatin state could be 
used to infer impacts of each treatment on the transcrip-
tome. Here we used accessibility scores for each gene 
(Methods) in order to integrate our single cell chromatin 
profiles with previously generated single cell transcrip-
tomes from an identical set of chemical perturbations 
[17]. After integrating the matched data sets, we trans-
ferred treatment labels from the nearest single cell tran-
scriptomes in shared, reduced dimension space, onto 
our single cell chromatin profiles [29] (Methods). Trans-
ferred labels from associated transcriptomes consistently 
reflected the true compounds driving the chromatin pro-
files (Fig.  3g). Strikingly, the dosages of Dex treatments 
were often misidentified, further emphasizing the dose-
independent response of cells to Dex within the tested 
range. Nonetheless, gene-specific impacts were highly 
correlated at the chromatin and transcript level across 
compounds (Fig. 3h).
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Ultimately, we sought to identify sequences in noncod-
ing DNA that would predict transcriptional responses of 
nearby genes to Dex. Applying co-accessibility scores [31] 
to link promoters with distal elements, we used sequence 
features to generate predictive models of drug-induced 
gene expression changes (Methods). Including TF motifs 
within distal sites that were linked to Dex-affected gene 
promoters improved predictions of gene expression by 
more than 50%, compared with models based on pro-
moter elements alone (Supp. Figure  10e). Reassuringly, 
distally located GR binding motifs had the largest effect 
size in predicting whether genes increase expression in 
response to Dex-treatment (Supp. Figure 10f ).

The effects of BMS or Nutlin-3A on gene accessibility 
were also correlated with transcript abundance (Fig. 3h). 
However, because of the more modest impact of these 
compounds on both chromatin and transcript abun-
dance, BMS and Nutlin-3A treated profiles were often 
classified as untreated and vice versa. (Fig. 3g). With com-
paratively few significant changes in accessible regions 
from BMS and Nutlin-3A treatments, further analysis of 
their relationship to gene expression was limited.

The histone deacetylase inhibitor SAHA produced 
the clearest dose-dependent trajectory of alterations in 
chromatin accessibility. Grouping SAHA-treated cells 
by pseudodose values revealed a strong correspond-
ence between trajectory position and the true treatment 
dose, suggesting that the trajectory reflects increasingly 
SAHA-altered chromatin state (Fig.  3b). Interestingly, 
at intermediate SAHA doses (5—100  μM), individual 
cells occupied more broad pseudodose ranges, indica-
tive of a heterogeneous progression towards the maxi-
mally SAHA-affected state (Fig.  3c). Counterintuitively, 
more SAHA-affected sites exhibited a sustained loss (n 
= 757), rather than a gain (n = 58), of accessibility along 
the pseudodose axis (Fig.  3d, Supp. Figure  11), a trend 

that was poorly explained by specific TF binding motifs 
(Fig. 3e and f ). A dose-dependent reduction of accessibil-
ity in HDACi-treated cells has been observed previously 
[32, 33], and together these results support a general 
requirement for the turnover of histone acetylation in 
maintaining proper nucleosome organization.

The impacts of SAHA on expression and accessibility 
were highly correlated for affected genes (Fig. 3h). More-
over, shared, dose-specific effects on both chromatin and 
RNA abundance of SAHA-treated cells enabled accu-
rate dosage-level treatment predictions for individual 
chromatin profiles (Fig. 3g). Similar to the Dex response, 
when predicting the effect of SAHA exposure on a gene’s 
expression, including sequence features within distally 
connected sites improved predictive power (Fig. 3i). The 
motif for PBX3, which is enriched within SAHA-opened 
sites (Figs.  2e, 3e), was also the strongest predictor for 
increased gene expression upon SAHA treatment when 
present within distal sites co-accessible with a gene’s 
promoter (Fig.  3j). Together these data warrant further 
investigation of a role for PBX3 in the HDACi response. 
Ultimately, when applied to HTS experiments, sciPlex-
ATAC-seq highlights the underlying contribution of 
chromatin, often within non-coding regions, in govern-
ing cellular response to chemical perturbation.

Improved scalability enables donor and cell‑type specific 
analysis of chromatin organization in mixed lymphocyte 
reactions
Investigating heterogeneous cell mixtures from each 
of many conditions necessitates a platform which eas-
ily scales beyond 10,000–100,000 cells. We therefore 
adapted our nuclear hashing approach for compatibility 
with the recently described three-level combinatorial 
indexing strategy for highly-scalable single cell chromatin 

Fig. 3 HDACi treatment induces dose‑dependent changes in the chromatin landscape, which reflect the transcriptional state of individual cells. 
a UMAP of vehicle and SAHA‑treated cells showing the predicted chromatin state trajectory through which cells traverse with increasing doses 
of SAHA. Data points are colored by doses used. Red points on trajectory represent ‘root’ positions (located within groups of vehicle‑treated cells). 
b Proportions of cells treated with each actual dose of SAHA across pseudodose trajectory bins. c Density plots quantitate trajectory positions 
of cells treated with increasing doses of SAHA. d Smoothed accessibility scores across SAHA‑pseudodose for three classes of identified differentially 
accessible sites (opening, closing, and dynamic). Closing and opening sites were defined as sites with a maximum accessibility score occurring 
within the first or last 20 pseudotime bins (out of 100 bins), respectively. Dynamic sites have a maximum score in the intervening pseudodose 
bins. e and f Top motifs explaining whether a distal (E) or promoter‑proximal (F) SAHA‑DA site is classified as closing (blue), opening (red) or static 
(non‑DA, green). g Treatment label prediction accuracy when mapping sciPlex‑ATAC data to corresponding sciPlex‑RNA [17] datasets. Labels 
from scRNA‑seq cells to our cells with matched scATAC information using Seurat’s find anchor transfer function [29], implemented by the ArchR 
package [30]. Cells which received BMS dose treatments greater than 1 μM were pooled and labeled BMS_5P due to very low cell recovery for these 
conditions. h Scatter plots comparing regression coefficients for gene accessibility scores (ATAC) and gene expression (RNA) as a function of dose 
for each drug. Only genes with significant dose terms for gene expression were considered. i SAHA‑responsive DE Gene expression variation 
explained by models taking into account sequence elements within promoters alone, or within promoters and distal co‑accessible sites. The value 
(1.24) above the right bar reflects the fold increase in predictive power with models which include distal co‑accessible sites. j Sequence elements 
with largest regression coefficients from promoter (grey) or distally connected sites (red) when predicting SAHA‑affected gene responses

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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accessibility profiling [2]. We refer to this adapted proto-
col as sciPlex-ATAC3.

For sciPlex-ATAC3, accessible chromatin is tagged 
using a single commercially-available transposome com-
plex. Two separate splinted ligation reactions are then 
used to sequentially add well-specific barcodes sepa-
rately to each side of the transposed DNA fragments, 
followed by PCR-based barcode addition. We reasoned 
that with hash oligos bearing the universal Nextera P7 
sequence and a capture oligo possessing the Nextera P5 
sequence, the resulting annealed product would resem-
ble transposed chromatin fragments and be susceptible 
to the same indexing reactions as chromatin within each 
nucleus (Supp. Figure 12). We evaluated sciPlex-ATAC3 
with species-mixing experiments and found that by 
increasing the melting temperature of the annealed hash-
capture product, we were able to achieve accurate label 
assignment without the need for a hash extension step 
(Supp. Figure 13).

Using human peripheral blood mononuclear cells 
(PBMCs) for mixed lymphocyte reactions as an experi-
mental system, we sought to apply sciPlex-ATAC3 to 
explore allogeneic immune responses across multiple 
donors. PBMCs were harvested from four unrelated 
individuals and split into two fractions, responders and 
stimulators, the latter of which were subsequently irra-
diated. The two fractions were recombined such that 
cells from each responder were paired 1:1 with stimula-
tors from all other donors (and autologously as a con-
trol) and cultured in 96-well plates. Additional controls 
included responders cultured with stimulatory beads 
(ratio 10:1; responder: bead), and both responders and 
stimulators cultured alone (Fig. 4a). Within the 96-well 
culture plate, each of the 28 conditions was cultured in 
triplicate for five days prior to harvesting for sciPlex-
ATAC3 or flow cytometric analysis (Supp. Figure 14a). 
Nuclei from each well were then hashed and pooled for 
sciPlex-ATAC3, allowing us to assay chromatin profiles 

from single nuclei, simultaneously for all conditions 
and biological replicates.

After filtering for ATAC quality and hash enrich-
ments, we resolved sample conditions for 18,567 fil-
tered nuclei, spanning all experimental conditions and 
replicates (Supp. Figure 14c, Supp. Table S2). Applying 
dimensionality reduction, we identified seven distinct 
clusters of chromatin states in our data (Supp. Fig-
ure  14b). By integrating chromatin accessibility infor-
mation with previously annotated single cell RNA-seq 
data from PBMCs (10X genomics, pbmc_10k_v3), we 
found nuclei within distinct clusters to be enriched for 
specific immune cell types (Supp. Figure  14d). Com-
bining the annotation enrichments for each cluster 
with accessibility scores for common immune mark-
ers enabled us to broadly annotate cell types within 
our experiment (Fig.  4b, Supp. Figure  14e). Impor-
tantly, nuclei originating from “stimulator alone” condi-
tions were disproportionately concentrated in clusters 
3 and 6, which also showed the least enrichment for 
immune cell labels (Supp. Figure 14d,e). Clusters 3 and 
6 therefore likely represent irradiated PBMCs across 
MLR conditions and were excluded from downstream 
analyses.

Hash labels enabled us to define the proportion of 
immune cell-types recovered from each condition 
(Fig.  4c). By further subsetting cells by biological rep-
licate, we further compared the proportion of each 
cell type recovered in stimulated conditions relative to 
unstimulated cultures (Supp. Figure 15a-d). As expected, 
we observed an increase in the proportion of activated 
T-cells in the bead-stimulated condition and most alloge-
neic-stimulation conditions, but not autologously stimu-
lated cells (Fig. 4d). Bead and allogeneic T-cell activation 
were further supported by flow cytometric analysis of cell 
proliferation for all conditions (Supp. Figure 16a-f ), illus-
trating that sciPlex-ATAC3 can detect meaningful cell 
type composition changes in heterogeneous specimens.

(See figure on next page.)
Fig. 4 sciPlex‑ATAC3 elucidates effects of allogeneic T‑cell stimulation on the chromatin landscape. a Schematic of mixed lymphocyte reaction 
conditions and experimental setup. b UMAP representation of chromatin profiles from recovered cells with assigned cell type annotations. c 
Proportion of cells across annotations for each experimental condition (excluding the “stimulator alone” condition). d Percentage of activated T‑cells 
recovered from each condition. Variation in recovery was determined by separately quantifying each of three biological replicates for all conditions. 
Red asterisks indicate significant difference in the mean relative to no‑stim for each responder (Student’s t‑test; *: p < 0.05; **: p < 0.01, ***: p < 0.001; 
****: p < 0.0001). e UMAP representation of chromatin profiles of T‑cells from the MLR experiment, colored by pseudotime bins as determined 
using the learn_graph function from Monocle3 [22]. f Distribution of frags per cell recovered within bins across the T‑cell activation trajectory. 
g UMAP representation of only the activated T‑cells colored by pseudotime bin (left) or stimulation type (right). h Distribution of pseudotime 
positions of activated T‑cells from either bead, or allogeneically (allo) stimulated conditions for each responder. i Smoothed accessibility scores 
across pseudotime for sites found to vary over the trajectory (within activated T‑cells). Top heatmap (Frac. Allo) displays the fraction of Activated 
T‑cells within each pseudotime bin from MLR (Allo) conditions. j Gene set analysis of genes with altered accessibility across pseudotime (within 
activated T‑cells) using the Hallmark gene sets from MSigDB. Directionality scores for gene sets were determined using the runGSA function 
from the piano package [34]
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Given chromatin accessibility profiles for each cell, 
we strove to isolate changes to the chromatin of T-lym-
phocytes that are shared among donors, but enriched 
in allo-, as opposed to bead stimulation conditions. 
Upon TCR antigen recognition and co-stimulation, rest-
ing T-cells undergo dramatic chromatin remodeling, 

ultimately upregulating transcription of cytokines and 
cell cycle machinery [35]. Using Monocle3, we identi-
fied a trajectory of chromatin changes between resting 
and activated T-cells (Fig.  4e). Consistent with general 
chromatin decondensation, we observed a large increase 
in recovered fragments per nucleus coinciding with 

Fig. 4 (See legend on previous page.)
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progression towards the activated state (Fig.  4f ). Sur-
prisingly, when we examined activated T-cells alone, we 
noticed a more restricted localization of bead-activated 
T-cells, compared with those from allo-stimulated condi-
tions (Fig. 4g), a pattern which holds across all individuals 
(Fig. 4h). To identify potential differences in gene regula-
tion between stimulation types, we identified sites with 
altered accessibility across the trajectory within only acti-
vated T-cells. We found 3,973 sites which open or close 
across this axis (Fig.  4i, Supp. Figure  17a), and open-
ing sites were enriched for transcription factor binding 
motifs common to the AP-1 complex (Supp. Figure 17b), 
a factor with established roles in T-cell activation [36]. 
Similar TF enrichments were obtained when using sites 
identified through direct comparison of allo and bead-
stimulated, activated T-cells (Supp. Figure  17d,e). Fur-
thermore, genes with increased accessibility scores across 
the activated T-cell trajectory were most associated with 
terms such as allograft rejection and IL2 signaling, in 
which T cells play a central role (Fig. 4j). Taken together, 
these results demonstrate that sciPlex-ATAC3 can distin-
guish between synthetic (bead-based) and allogeneically 
activated T cells based on their chromatin profiles alone, 
with genes and TFs canonically associated with T cell-
mediated processes more accessible in allo-stimulated 
chromatin.

Altered chromatin decondensation is a byproduct 
of chemically obstructed allogeneic T‑cell activation
To investigate chemical immunosuppression of alloge-
neic T-cell activation, we next combined high-through-
put chemical screening with cultured mixed lymphocyte 
reactions (Fig. 5a). Using donor D as the responder and 
donor A as an allogeneic stimulator, responder PBMCs 
were cultured separately with autologous, allogeneic or 
synthetic (bead) stimulators. Cells within each stimu-
lation group were further cultured for five days with 
individual or combinations of immunosuppressive or 
epigenetic targeting compounds. Each treatment was 
performed at four distinct doses, including a vehicle con-
trol, and performed in biological replicate, totalling 192 
conditions (Supp. Figure  18a). Using sciPlex-ATAC3, all 
treatment wells were processed in a single batch, with 
67,803 nuclei passing snATAC quality filters (Supp. Fig-
ure 18b). 36,511 snATAC profiles remained after filtering 
for singlets and high confidence hashing. With the excep-
tion of dexamethasone, all chemical treatments reduced 
overall cell recovery with increasing dosage (Supp. Fig-
ure  18c). Broad cell types were identified by integrat-
ing the vehicle treated cells from this experiment with 
annotated cells from our original MLR dataset (Supp. 
Figure 18d) and were consistent with gene marker acces-
sibility (Supp. Figure 18e).

Faceting chromatin profiles by stimulation type 
revealed only subtle impacts on the abundance of recov-
ered chromatin states, while most chemical treatments 
severely altered the distribution of profiles, particularly at 
higher dosages (Supp. Figure 19a). In particular, SAHA, 
BMS, and any treatment incorporating CycA increased 
the recovery of chromatin profiles enriched for dead/
irradiated cells, consistent with toxicity of higher dos-
ages (Supp. Figure 19b, 20). Allo-stimulation significantly 
increased the recovery of activated T-cell profiles (Supp. 
Figure  21a), which exhibited increased global chroma-
tin accessibility compared with resting states (Supp. 
Figure 21b,c).

To examine the impact of each chemical intervention 
on allogeneic T-cell activation, we focused our analy-
sis on T-cells recovered from allo-stim conditions. Tell-
ingly, increasing dosages of each treatment lessened the 
recovery activated T-cells in allo-responding conditions. 
Moreover, with clinically relevant compounds includ-
ing dexamethasone, methotrexate and cyclosporin A, 
even the lowest doses prevented nearly all T-cell activa-
tion, when compared with auto stimulation (Fig.  5b). 
Very few of the allo-stimulated T-cell nuclei exposed to 
the explored compounds were found in the activated 
state (Supp. Figure  21d). Nonetheless, by grouping allo-
activated T-cells from each drug treatment by their acti-
vation trajectory positions, we identified variable degrees 
of inhibited progress towards the activated T-cell state 
among the drugs used. While combined treatment with 
methotrexate and cyclosporin A potently restricted the 
range of chromatin profiles, rapamycin, a compound 
commonly used to combat GVHD [37] was much less 
impactful (Fig. 5c), even at the highest tested doses (Supp. 
Figure 21e). Using the same trajectory-based groupings, 
we identified loci-specific chromatin changes along this 
allo-activated T-cell axis, with opening sites enriched for 
SMAD5 and KLF6 motifs regardless of timing (Supp. Fig-
ure 2 2a-f ). By inhibiting the majority of T-cell activation, 
drug treatments produced few obvious changes to spe-
cific chromatin-sites along the trajectory compared with 
untreated cells. However, the fraction of reads in peaks 
(FRIP) for nuclei along the T-cell activation trajectory 
were significantly influenced by most (6/8) compounds in 
a dose-dependent manner, pointing to increased accessi-
bility within atypical regions as T-cells respond to allo-
geneic stimuli (Fig. 5d). Because nuclear decondensation 
in activated T-cells can proceed in the absence of key 
transcription factors [38], reduced FRIP values along 
the activation trajectory may point to deregulated chro-
matin remodeling downstream of these events in the 
rare instance of activation. Ultimately, sciPlex-ATAC3 
reveals that diverse chemical regimens not only prevent 
the majority of resting T-cells from progressing towards 
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allo-activated states, but also significantly disrupt canoni-
cal stimulation-dependent chromatin remodeling. These 
results likely reflect myriad disrupted cellular-processes 
for which additional phenotypic information will be 
invaluable.

Discussion
This work presents a straightforward, scalable strategy 
for hashing large numbers of samples for single-cell chro-
matin accessibility profiling. Applying sciPlex-ATAC-seq 
to a chemical screen, we observed drug and dose-spe-
cific effects of four compounds on the chromatin land-
scape of A549 cells, consistent with their mechanisms of 
action. Incorporating distal regulatory site information 
improved our ability to predict downstream effects of 
drugs on gene transcription, highlighting the mechanistic 

importance of non-coding regulatory elements [39]. By 
resolving chromatin profiles within individual cells we 
show that HDACis can induce heterogeneous chromatin 
responses, particularly at intermediate doses. Such vari-
able responses to chemical inhibitors are not uncommon 
and can pose challenges in clinical settings [20]. Uncov-
ering the mechanistic basis and consequences of cell-to-
cell variation in drug response will help guide the usage 
of therapeutically relevant compounds.

With the more scalable sciPlex-ATAC3, we also explored 
the immunogenic response of human PBMCs in mixed 
lymphocyte reactions. By performing and resolving multi-
ple biological replicates for each condition, we were pow-
ered to detect altered T-cell proliferation and activation 
across MLR conditions. Bead-stimulated T-cells exhibited 
distinct chromatin profiles compared with activated T-cells 

Fig. 5 Altered chromatin decondensation is a byproduct of chemically obstructed allogeneic T‑cell activation a Illustration of using chemical 
intervention to block allogeneic activation of resting T‑cells. b heatmap showing the percent of activated T‑cells (of all recovered cells) 
in allo‑stimulated conditions treated with increasing dosage of eight different compounds/combinations. c Heatmap showing the fraction of cells 
within each pseudotime bin treated with any non‑vehicle dose of each compound. Rows/treatments were sorted by the sum of row values. d 
Predicted FRIP scores for cells within each pseudotime bin from an interaction model of pseudotime position and drug dose. Red asterisks indicate 
a significant (*** = Pr < 0.0001) increase in goodness of fit for models including drug dose as an interacting term with pseudotime, compared 
with models using pseudotime alone (log ratio test)
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from MLR conditions in a manner that was shared across 
donors. Interestingly, T-cell chromatin states specific to 
allo-activation appeared to reflect the activity of transcrip-
tion factors such as AP-1 known to regulate genes involved 
in T-cell activation and differentiation [36], suggesting that 
bead stimulation only partially induces chromatin changes 
associated with T cell recognition of foreign cells. Upon 
activation, T-cells undergo a well characterized and rapid 
nuclear decompaction [35], a phenomenon also evident in 
our analyses [35, 40, 41]. Newly accessible regulatory ele-
ments within activated T-cells reflect the binding and activ-
ity of transcription factors which conspire to induce rapid 
proliferation, differentiation and signaling through altered 
gene expression programs [40, 41]. By examining vari-
ous chemical perturbations, we found that the majority of 
allo-T-cell activation can be potently inhibited via diverse 
pathways. However, for T-cells which managed to pro-
gress towards an activated-like state, most treatments also 
significantly disrupted global patterns of chromatin acces-
sibility, possibly reflecting upstream mechanisms of action 
for these compounds. For example, treatment with SAHA 
may inhibit T-cell activation and proliferation by induc-
ing acetate starvation and lowering intracellular pH [17, 
42]. Calcineurin inhibition with cyclosporin A was previ-
ously found not to block large scale chromatin decompac-
tion during T-cell activation [38], yet significantly altered 
the global distribution of accessible chromatin in our assay, 
perhaps as a symptom of reduced NFAT localization to the 
decondensed nucleus. Finally, unlike most examined con-
ditions, the anti-inflammatory effects of rapamycin and 
methotrexate potently blocked allogeneic T-cell activation 
without detectably affecting global chromatin accessibility, 
emphasizing how drug action need not be directed through 
chromatin. Our analysis was limited to broad immune cell 
types, but resolving effects on T-lymphocyte subtypes will 
be crucial for understanding how allogeneic-stimulation 
and chemical immunosuppression might alter the fates of 
activated T-cells.

Importantly, sciPlex-ATAC-seq presents several nota-
ble limitations. Extensive handling between barcoding 
reactions results in low overall nuclei yields (5–10%), and 
thus requires ample starting material. Moreover, omitting 
FACS-based sorting in sciPlex-ATAC3 to enhance nuclei 
recovery may lower data quality and increase sequenc-
ing costs. Here, analyzed nuclei from each experiment 
contained about 10% of the total reads sequenced (Supp. 
Table  6), which is similar to other scATAC methods, 
but lower than 10 × Genomics platforms (20–50%) [43]. 
Because sciPlex-ATAC does not explicitly remove dead 
cells, they should be considered for downstream interpre-
tations. Methods to stain and/or sort viable cells or nuclei 
prior to sequencing may also be desirable in some circum-
stances. Additionally, several alternative approaches also 

enable multiplexed snATAC-seq, including dscATAC-seq 
[8, 44], ASAP-seq [44], and SNuBAR [45]. While these 
approaches incorporate widely adopted droplet-based 
capture of nuclei, dscATAC-seq achieves scalability by 
incorporating an indexed-transposition reaction. ASAP-
seq extends the concept of hashing cells with barcode-
conjugated antibodies [14], which can be co-assayed in 
droplets with accessible chromatin. Both dscATAC-seq 
and ASAP-seq attain impressive data quality, but either 
require many custom transposases, or expensive DNA-
conjugated antibodies for sample multiplexing. Simi-
lar to our approach, SNuBAR uses unmodified DNA 
oligos to hash nuclei, but relies on their annealing to Tn5 
sequences during transposition. While our 2-level sciPlex-
ATAC-seq approach also employs custom indexed Tn5, 
unlike dscATAC-seq, ASAP-seq and SNuBAR methods, 
SciPlex-ATAC3was developed for scalability and util-
ity without expensive equipment, solely using commonly 
available reagents [2]. Also, in contrast with the SNuBAR 
approach, hashing for sciPlex-ATAC-seq is independent 
of transposition, potentially facilitating compatibility with 
single nuclei spatial profiling approaches [46]. Aside from 
additional sequencing, increasing the scale of sciPlex-
ATAC-seq experiments simply requires additional single 
stranded DNA oligos, making it attractive for HTS assays.

Ultimately, this work illustrates the potential value of 
sciPlex-ATAC-seq for dissecting how multicellular in vitro 
systems or disease models (e.g. organoids) respond to 
various perturbations. While continued development will 
be critical to address existing limitations and for cross-
platform compatibility of sciPlex-ATAC-seq, the core 
technology is immediately applicable to a wide variety of 
biological applications aimed at exploring large parameter 
spaces. Moreover, as recently demonstrated [44, 47–50], 
multimodal measurements provide unprecedented pheno-
typic information for individual cells and offer an attrac-
tive direction for future sciPlex-based assays.

Methods
Hash labeling nuclei
Adherent cells grown in 96 well format were prepared 
by first aspirating the existing media. 50μL of TrypLE 
(Termo-Fisher) was then added per well and the plate was 
incubated at 37  °C for 15  min. After incubation, 150μL 
of 1 × DMEM (gibco) + 10% FBS(gibco) was added to 
quench the TrypLE reaction. The 200μL cell suspension 
in each well was then transferred into a v-bottom 96 well 
plate, preserving the well orientations. Cells were then 
spun for 5  min at 300  g to pellet cells before aspirating 
media. Cell pellets were washed with 100μL 1xDPBS and 
then pelleted at 300 g for 5 min. For suspension cells, well 
contents were first transferred to a v-bottom plate and 
then pelleted at 300 g for 5 min. Cells were then washed 
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in 200μL 1xDPBS and spun down again before remov-
ing the DPBS. To isolate nuclei, pellets were then resus-
pended and gently pipetted up and down several times 
in 50μL of either cold lysis buffer alone (10 mM TrisHCl, 
10 mM NaCl, 3 mM MgCl2, 0.1% Igepal, 0.1% Tween20, 1 
× Protease inhibitor (Thermo Pierce™ Protease Inhibitor 
Tablets, EDTA-free)), cold lysis buffer with 0.01% Digi-
tonin (Promega), referred to as OMNI lysis buffer [51], or 
cold lysis buffer with 70 μM Pitstop 2 (Sigma) [52]. These 
conditions were compared in Supp. Figure 1.

Single stranded DNA oligo labels (hashes) were then 
added to nuclei (aiming for approximately 0.5  pmol 
hash molecules per 1000 cells) in lysis buffer and incu-
bated on ice for 5 min. Hashes have the sequence 5’-GTC 
TCG TGG GCT CGG AGA TGT GTA TAA GAG ACA-
GXXXXXXXXXXBAAA AAA AAA AAA AAA AAA AAA 
AAA AAA AAA -3’, where ‘X’s represent the 10nt, well-
specific hash ID. Ice-cold fixation buffer (1.5% Formalde-
hyde, 1.25 × DPBS (Gibco)) was then added to samples 
to achieve a final formaldehyde concentration of 1% and 
mixed gently. Fixation was allowed to occur for 15  min 
on ice. At this point nuclei from different samples were 
combined and further steps performed on this single 
pool. Fixative was removed by spinning the pooled sam-
ples at 500 g for 5 min. The pellet was then resuspended 
in nuclei suspension buffer (10  mM TrisHCl, 10  mM 
NaCl, 3  mM MgCl2) + 0.1% tween20. Nuclei were pel-
leted again before being resuspended in freezing buffer 
(50  mM Tris pH 8.0, 25% glycerol, 5  mM  Mg(OAc)2, 
0.1  mM EDTA, 5  mM DTT, 1 × Protease inhibitor 
(Thermo Pierce™)) at a final concentration of 2.5 million 
nuclei/ml (two-level, sciPlex-ATAC), or 5 million nuclei/
ml (three-level, sciPlex-ATAC3). Pooled samples were 
then flash frozen in liquid nitrogen and stored at -80 °C.

Co‑capture of hash oligo and ATAC profiles with two‑level 
sci‑ATAC 
Pooled, hash-labeled nuclei were thawed on ice, 
inspected for nuclei integrity, counted in the pres-
ence of Trypan blue (Gibco) and further adjusted to 
2.5 million nuclei/ml if necessary. 2μL nuclei were 
then distributed to all wells of a 96-well LoBind plate 
(Eppendorf ). To capture hash molecules within each 
nucleus, 1μL of 25  μM single-stranded DNA oligos 
(5’-TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA 
CAGNNNNNNNNXXXXXXXXXXTTT + TTT + 
TTT + TTT + TTT + TTT + TTT + TTT + TTT + 
TTTVN-3’) were added to each well. ‘X’s represent a well 
specific barcode while ‘N’s reflect the unique molecular 
index (UMI). ‘ + ’ indicates the subsequent nucleotide 
is a locked nucleic acid (LNA). A table of the hash bar-
codes associated with samples for each experiment is 
provided in Supp. Table 3. The plate was then incubated 

at 55  °C for 5  min and immediately returned to ice for 
5  min. Capture oligos annealed to hash molecules were 
then extended by adding 3μL of NEBNext High-Fidelity 
2X PCR Master Mix to each well and incubating at 55 °C 
for 10  min. Note that in Supp. Figure  1 we also tested 
extension reactions with Superscript IV Reverse Tran-
scriptase (Invitrogen) by adding 0.25μL SSIV enzyme, 
1μL 5 × SSIV reaction buffer, 0.25μL water, and 0.25μL 
10  mM DTT, and 0.25μL 10  mM dNTP to 3 uL nuclei. 
After extension 12μL 2X tagmentation buffer (20  mM 
Tris Ph 7.3, 10 mM MgCl2, 20% DMF) and 4μL of 4xCLB 
(40  mM TrisHCl, 40  mM NaCl, 12  mM MgCl2, 0.4% 
NP40, 0.4% Tween20) was added to all wells. Note that 
for nuclei permeabilized with Pitstop2, the 4xCLB was 
supplemented with 280  μM Pitstop 2, while nuclei per-
meabilized and hashed in OMNI buffer received 4μL of 
OMNI tag buffer (1.32 × DPBS, 0.4% Tween20, 0.04% 
Digitonin). Finally, 1μL of indexed Tn5 [23, 53] was added 
to each well and tagmentation was carried out at 55  °C 
for 15  min before returning to ice. 96 uniquely indexed 
TN5-based reagents were prepared by mixing in equal 
parts all combinations of Tn5 complexes containing bar-
coded N5 ends (8x) and Tn5 complexes with barcoded 
N7 ends (12x). Unloaded Tn5 enzyme can be purchased 
from Diagenode (Cat:C01070010-10) and all sequences 
used for loading Tn5 are contained in Supp. Table  4. 
Tagmentation was stopped by adding 25μL of ice cold 
40 mM EDTA + 1 mM spermidine to all wells and then 
incubating at 37 °C for 15 min. All wells were then pooled 
and DAPI was added to a final concentration of 3 μM for 
fluorescence-activated cell sorting (FACS). Using fluo-
rescence based sorting, a limited number of cells (varied 
by experiment based on desired expected doublet rate) 
were distributed to each well of a new 96-well deep-bind 
plate containing 12μL reverse cross-linking buffer (11μL 
EB (qiagen), 0.5μL 1%SDS, 0.5μL 20 mg/mL Proteinase K 
(promega)) within each well. Cross-links were reversed 
by incubating plates at 65 °C for 13.5 h on a PCR block. 
PCR was then used to add a second round of well specific 
barcodes to both the hash labels as well as tagmented 
chromatin. To each well we added 3.65μL Tween-20, 
1.25μL indexed Nextera P5 primer, 1.25μL indexed Nex-
tera P7 primer, and 18.125μL NEBNext High-Fidelity 2X 
PCR Master Mix. PCR conditions were as follows:

72 °C for 5 min
98 °C for 30 s
98 °C for 10 s
63 °C for 30 s
72 °C for 1 min
go to step 3 22X
72 °C for 5 min
4 °C
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Amplified libraries from each well were then pooled 
and concentrated with Zymogen clean and concentrate 
kit (using 5X DNA binding buffer), before being eluted in 
100μL EB. To separate the hash library from the ATAC 
library, the concentrated, pooled library was run on a 1% 
agarose gel and gel purified. The hash library appears as 
a band of size 199  bp, while the ATAC library was cut 
from ~ 200—3000 bp. Gel extraction was performed with 
the Nucleospin PCR and Gel extraction kit and eluted in 
50μL (ATAC library), or 25μL (hash library).

Co‑capture of hash and ATAC profiles with three‑level 
sci‑ATAC 
Hash-labeled nuclei were thawed on ice, inspected for 
nuclei integrity, counted and further adjusted to 5 mil-
lion nuclei/ml if necessary. 10μL nuclei were then distrib-
uted to wells of a 96-well LoBind plate. To capture hash 
molecules within each nucleus, 2μL of 25 μM of single-
stranded DNA “capture” oligos (5’-TCG TCG GCA GCG 
TCA GAT GTG TAT AAG AGA CAGNNNNNNNNTT 
+ TTT + TTT + TTT + TTT + TTT + TTT + TTT 
+ TTT + TTT + TVN-3’) were added to each well (‘N’s 
reflect the unique molecular index (UMI), ‘ + T’ rep-
resents the presence of locked nucleic acids, which 
increase the melting temperature of the capture oligo 
annealed to hash oligo). For the experiment shown in 
Supp. Figure 12, “enhanced” hash oligos had the follow-
ing sequence: 5’-GTC TCG TGG GCT CGG AGA TGT GTA 
TAA GAG ACAGXXXXXXXXXXCGG ACG GTC GAC 
ATG GGA TGA GAG GCC GCC GC-3. “Enhanced” cap-
ture oligos had the sequence: 5’-TCG TCG GCA GCG TCA 
GAT GTG TAT AAG AGA CAGNNNNNNNNGC + GGC 
+ GGC + CTC + TCA + TCC + CAT + GTC + GAC 
+ CGT + CCG-3’ and were ordered with or without the 
presence of locked nucleic acids in positions indicated 
by “ + ”. The plate was then incubated at 55 °C for 5 min 
and immediately returned to ice for 5 min. 35.5μL of Tn5 
reaction mix (25μL 2X tagmentation buffer, 8.25μL 1 × 
DPBS, 0.5μL 1%digitonin, 0.5μL 10% tween-20, 1.25μL 
water) was then added to each well. Finally, 2.5μL TDE1 
Tagment DNA Enzyme (Illumina) was added to each well 
(final volume = 50μL). The plate was sealed with adhesive 
tape, and spun at 500 g for 30 s. Tagmentation was then 
performed by incubating the plate at 55  °C for 30  min. 
Tagmentation was stopped by adding 50μL of ice cold 
40 mM EDTA + 1 mM spermidine to all wells and then 
incubating at 37 °C for 15 min. Using wide bore tips, all 
wells were pooled and tagmented nuclei were pelleted at 
500 g for 5 min at 4 °C and the supernatant was removed. 
Nuclei were carefully resuspended in 500μL 40  mM 
TrisHCl, 40 mM NaCl, 12 mM MgCl2, + 0.1% Tween-20 
and spun again at 500  g for 5  min at 4  °C. Supernatant 
was aspirated and the pellet was resuspended in 110μL 

40  mM TrisHCl, 40  mM NaCl, 12  mM MgCl2, + 0.1% 
Tween-20.

5’ ends of tagmented chromatin and captured hash oli-
gos within fixed nuclei were then phosphorylated via a 
polynucleotide kinase (PNK) mediated reaction. 110μL 
of resuspended nuclei was mixed with 55μL 10 × T4PNK 
Buffer (NEB), 55μL rATP (NEB), 110μL nuclease-free 
water, 220μL T4PNK (NEB), and 5μL of the reaction mix 
was distributed to each well of a 96-well plate. The plate 
was then sealed, spun at 500  g for 30  s, and then incu-
bated at 37 °C for 30 min.

Following kinase reactions, the first level of indexing 
was achieved by attaching indexed oligos specifically to 
the ‘N7-tagged’ side of tagmented chromatin and captured 
hash molecules. N7-specific ligations were performed by 
adding 10μL 2X T7 ligase buffer, 0.18μL 1000 μM N7 splint 
oligo (5’-CAC GAG ACG ACA AGT-3’), 1.12μL nuclease-
free water, 2.5μL T7 DNA ligase (NEB), 1.2μL 50 μM N7 
oligo (5’-CAG CAC GGC GAG ACTNNNNNNNNNNGAC 
TTG TC-3’, where ‘N’s represent a well specific index) 
directly to all wells containing the kinase reaction mixture 
(final well volume = 20μL). The plate was then sealed, spun 
at 500 g for 30 s, and ligation was carried out at 25 °C for 
1 h. Ligations were stopped by adding 20μL ice cold 40 mM 
EDTA + 1  mM spermidine to each well and incubating 
at 37  °C for 15  min. Using wide bore tips, all wells were 
pooled into a 15 ml conical tube and volume was increased 
by adding three volumes of 40 mM TrisHCl, 40 mM NaCl, 
12 mM MgCl2, + 0.1% Tween-20. Nuclei were pelleted for 
10 min at 500 g and 4 °C, and resuspended in 550μL 40 mM 
TrisHCl, 40 mM NaCl, 12 mM MgCl2, + 0.1% Tween-20.

The second level of indexing was performed by ligat-
ing indexed oligos to the phosphorylated ‘N5-tagged’ 
side of tagmented chromatin and captured hash mol-
ecules. 5μL of pooled, resuspended nuclei were thus 
distributed to all wells of a new 96-well plate. The sec-
ond ligation reaction was then performed by adding 
10μL 2X T7 ligase buffer, 0.18μL 1000  μM N5 splint 
oligo (5’-GCC GAC GAC TGA TTA-3’), 1.12μL nuclease-
free water, 2.5μL T7 DNA ligase, 1.2μL 50 μM N5 oligo 
(5’-CAC CGC ACG AGA GGTNNNNNNNNNNGTA 
ATC AG-3’, where ‘N’s represent a well specific index) 
to all wells (final well volume = 20μL). The plate was 
then sealed, spun at 500 g for 30 s, and ligation was car-
ried out at 25 °C for 1 h. Ligations were stopped by add-
ing 20μL ice cold 40  mM EDTA + 1  mM spermidine 
to each well and incubating at 37 °C for 15 min. Using 
wide bore tips, all wells were pooled into a 15 ml coni-
cal tube and volume was increased by adding three vol-
umes of 40 mM TrisHCl, 40 mM NaCl, 12 mM MgCl2, 
+ 0.1% Tween-20. Nuclei were pelleted for 10  min at 
500  g and 4  °C, and gently resuspended in 500μL EB 
buffer (Qiagen). For distribution to PCR wells, Nuclei 
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were either stained with DAPI (3 μM final) and sorted 
into wells of a 96-well plate (185 nuclei/well) containing 
reverse cross-linking buffer (11μL EB buffer (Qiagen) 
0.5μL Proteinase K (Roche), 0.5μL 1% SDS), or counted 
and adjusted to a concentration of 1850/ml. 10μL of 
diluted nuclei were distributed to all wells of a 96-well 
plate and 1μL EB buffer (Qiagen) 0.5μL Proteinase K 
(Qiagen), 0.5μL 1% SDS was added to enable crosslink 
reversal. Plates were then sealed, spun at 500 g for 30 s 
and crosslinks were removed by incubating plates at 
65 °C for 16 h.

The third level of indexing is achieved through PCR. 
Therefore PCR mix containing 2.5μL 25  μM P7 primer 
(5’-CAA GCA GAA GAC GGC ATA CGA GAT NNN 
NNNNNNNCAG CAC GGC GAG ACT-3’), 2.5μL 25  μM 
P5 primer (5’-AAT GAT ACG GCG ACC ACC GAG ATC TA 
CACNNNNNNNNNNCAC CGC ACG AGA GGT-3’), 
25μL NEBNext High-Fidelity 2X PCR Master Mix, 7μL 
Water, 1μL 20 mg/mL BSA (NEB). Importantly, each well 
received a unique, well-specific, combination of P7 and 
P5 primers. PCR conditions were as follows:

72 °C for 5 min
98 °C for 30 s
98 °C for 10 s
63 °C for 30 s
72 °C for 1 min
go to step 3 19X
72 °C for 5 min
4 °C

Amplified libraries from each well were then pooled 
and concentrated with Zymogen clean and concentrate 
kit (using 5X DNA binding buffer), before being eluted in 
100μL EB.

96‑plex chemical treatments
From a single large culture, cells were washed with PBS 
and 25,000 A549 cells were seeded into each well of a 
96-well flat-bottom culture dish (Thermo Fisher Scien-
tific, cat no. 12–656-66). Cells were cultured in 100μL 
DMEM (Gibco) containing 10% (v/v) FBS (Gibco) and 
1% (v/v) Penicillin–Streptomycin (Gibco) for 24 h prior 
to drug treatment. Drug dilutions were prepared at 100 
times the desired dose such that all final treatments 
maintained a 0.1% concentration of vehicle in PBS. 
To initiate the treatments, 1μL of the prepared com-
pounds was added to each well to obtain the final tar-
get concentration. Cells from each well were harvested 
after 24  h for SciPlex-ATAC-seq using the two-level 
approach with CLB lysis and tagmentation conditions 
as described above.

Species mixing experiments
NIH-3T3 cells were purchased from ATCC (cat no. CRL-
1658), while A549 were kindly provided by Dr. Robert 
Bradley (UW), and these two cell lines were used for all 
species mixing experiments. For each cell line, cells were 
separately cultured with DMEM (Gibco) containing 10% 
(v/v) FBS (Gibco) and 1% (v/v) Penicillin–Streptomycin 
(Gibco) in 10  cm dishes to approximately 80% conflu-
ence. The adherent cells were washed with PBS, dislodged 
with TrypLE (Termo-Fisher) and diluted to desired con-
centrations in fresh culture medium. 50,000 cells in sus-
pension were distributed to wells of a v-bottom 96-well 
plate (Thermo Fisher Scientific, cat no. 549935) for sep-
arate hashing of each cell line. For the pre- versus post-
mixing experiment (Supp. Figure 2), NIH-3T3 and A549 
cells were resuspended and diluted in 1XDPBS, then 
either hashed and fixed separately (pre-mix), or mixed 
at equal proportions then hashed and fixed (post-mix) as 
described above.

Mixed lymphocyte reactions and CFSE staining
Whole blood was extracted by venipuncture using 
10  ml Sodium Heparin tubes (BD Vacutainer) from 
four consenting volunteers (approved under IRB: FWA 
#00006878). PBMCs were then isolated from whole blood 
using Ficoll Paque Plus (GE Life Sciences Cat-17144002). 
Briefly, 15 ml Ficoll was underlaid beneath 35 ml diluted 
whole blood 1:1 with PBS in 50 ml conical tubes. Tubes 
were centrifuged at 400 g for 25 min without brakes for 
phase separation. The buffy coat containing PBMCs was 
then harvested into a new 50  ml conical tube using a 
transfer pipette and resuspended with PBS to 50 ml final 
volume. Harvested material was spun at 300 g for 10 min 
and the supernatant was removed. Cells were resus-
pended in 3-5  ml PBS for counting and transferred to 
15 ml conical tubes. PBMCs from each donor were fur-
ther divided into responder and stimulator pools before 
being spun at 600 g for 5 min and removing supernatant. 
Stimulator samples were resuspended at a final con-
centration of 4 ×  106 cells/mL in cTCM (RPMI (Gibco), 
10% FCS (Gibco), 1X Pen-Strep (Gibco), 1X GlutaMAX 
(Gibco), 1.85μL BME (Sigma) per 500 ml of media) and 
irradiated (3500 cGy). Responders were resuspended at a 
concentration of 10 ×  106 cells/ml in PBS. All responder 
cells were labeled with carboxyfluorescein succinimidyl 
ester (CFSE) (ThermoFisher – Cat: C34554), regardless of 
experiment. Stock CFSE was added to responder cells to 
obtain a final concentration of 1 μM and gently vortexed. 
Responders were then incubated at 37 °C in a water bath 
for 15 min with periodic gentle vortexing. CFSE labeling 
was then quenched by filling the 15 ml conical tube to the 
top with cTCM. Responder cells were then pelleted at 
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600 g for 5 min. Cells were washed again with cTCM and 
spun as in the previous step. Responder cells were finally 
resuspended, counted, and adjusted to a final concentra-
tion of 4 ×  106 in cTCM before plating.

Responder cells from each of the four donors were 
plated in 96-well round bottom plates (Thermo) accord-
ing to experimental layout in Supp. Figure 13a, with each 
well receiving 400,000 cells in 100μL. For bead stimulated 
conditions, only 80,000 responder cells were seeded per 
well (20μL). An equal number of Irradiated stimulator 
cells were added to wells according to the experimen-
tal layout by adding 100uL (Supp. Figure 13a). 100uL of 
extra cTCM was added to wells lacking stimulators to 
ensure all wells had 200μL final volume. For bead stimu-
lated conditions, MACSiBead particles with biotinylated 
antibodies against human CD2, CD3, and CD28 from 
the T Cell Activation/Expansion Kit, human (Miltenyi 
Biotech; Cat:130–091-441) were prepared according 
to manufacturer’s instructions. Beads were ultimately 
diluted such that each bead stimulated well received 8000 
beads in a final volume of 200μL cTCM. All conditions 
were harvested for sci-PlexATAC3 or fluorescent acti-
vated cell sorting-based measurements of CFSE staining 
five days after plating the experiment. Fluorescent cyto-
metric analyses were performed using a BD FACSAria II 
machine.

Chemical perturbations during mixed lymphocyte 
reactions
PBMCs were isolated from whole blood and divided 
into stimulator and responder pools as described above, 
except without CFSE staining. 2 × 10e5 responder cells 
were plated in each well of the allo and auto stim col-
umns, while 1 × 10e5 responder cells were deposited into 
bead stimulation wells. Notably, unlike the multi-donor 
MLR experiment, for this experiment bead stimulations 
resulted in a lower recovery of activated T-cells com-
pared to allo-activated conditions (Supp. Figure    21a). 
This was a result likely due to expired reagents. For allo 
and auto stimulations, 2 × 10e5 irradiated stimulator 
cells were added to each well and all wells had a final vol-
ume of 200μL with cTCM. Chemical treatments were ini-
tiated immediately after plating responders, stimulators 
and beads by adding 2μL of the prepared compounds to 
each well to obtain the final target concentration (Supp. 
Table 5). Cells from each well were harvested for SciPlex-
ATAC3 six days after treatments using the approach 
described above.

Sequencing
For two-level sciPlex-ATAC experiments, which 
employ indexed Tn5 for the first level of chromatin 

barcoding, amplified ATAC and hash libraries needed 
to be sequenced separately. To sequence the two levels 
of barcodes introduced to chromatin via indexed-trans-
position PCR, a custom sequencing recipe was used 
as described previously [23, 53]. Briefly, the following 
sequencing primers were used with Illumina Nextseq500 
or Miseq platforms:

Read 1 (5’-GCG ATC GAG GAC GGC AGA TGT GTA 
TAA GAG ACAG-3’)
Read 2 (5’-CAC CGT CTC CGC CTC AGA TGT GTA 
TAA GAG ACAG-3’)
Index 1(5’-CTG TCT CTT ATA CAC ATC TGA GGC 
GGA GAC GGTG-3’)
Index 2(5’-CTG TCT CTT ATA CAC ATC TGC CGT 
CCT CGA TCGC-3’)

The custom sequencing recipe uses “dark cycles” to 
prevent the 21-27nt constant region between two cell 
barcodes from crashing the sequencing software during 
index primed reactions. Therefore the following distri-
bution of sequencing cycles was used: Read 1: 51 cycles, 
Read 2: 51 cycles, Index 1: 8 cycles + 27 dark cycles + 
10 cycles, Index 2: 10 cycles + 21 dark cycles + 8 cycles. 
Index 1 captures the Tn5 barcode (T7), and then PCR 
barcode (P7). Index 2 captures the PCR barcode (P5), 
then Tn5 barcode (T5). The resulting indexed read is thus 
a 36nt sequence of the structure T7:P7:P5:T5.

The corresponding hash library was sequenced using 
standard primers and sequencing chemistry. Read 1 (18 
cycles) captures the unique molecular identifier (8nt) 
as well as the PCR (p5) barcode (10nt). Read 2 (> = 16 
cycles) captures the hash ID. Index 1 (10 cycles) captures 
the PCR (p7) barcode and index 2 (10 cycles) captures the 
barcode from the in-well hash-capture oligo extension.

The custom sequencing recipe for sciATAC-seq3 has 
been described previously [2] and was similarly followed 
here for 3-level sciPlex-ATAC (read 1: 51 cycles, read 2: 
51 cycles, index 1: 10 cycles + 15 dark cycles + 10 cycles, 
index 2: 10 cycles + 15 dark cycles + 10 cycles). Because 
three level sciPlex-ATAC experiments result in hash mol-
ecules and chromatin fragments with identical barcodes 
and read structure the material was sequenced together 
for these experiments.

Preprocessing sequencing data
The sequence processing strategy used here was estab-
lished for sciATAC-seq2 and sciATAC-seq3, and has been 
described previously [2, 3]. Briefly, BCL files from Illu-
mina sequencing were first converted to fastq files with 
bcl2fastq v2.16 (Illumina). Reads were filtered to include 
only those associated valid cell barcode combinations. 
Specifically, each of the four barcodes associated with 
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each read pair, together comprising a cell ID, was required 
to be within an edit distance of 2 from expected barcode 
sequences. Valid barcodes were corrected for any errors 
and read pairs were trimmed with Trimmomatic-0.36 
[54] to remove adapter sequences. Trimmed reads were 
then aligned to either a hybrid human/mouse (GRCh38/
mm9) genome (for species mixed samples) or the human 
(GRCh38) genome alone using bowtie2 [55] with options 
“-X 2000 -3 1”. Properly aligned read pairs with a quality 
score of at least 10 were retained for downstream analysis 
using samtools with options “-f3 -F12 -q10”.

Because the hash label libraries from sciPlex-ATAC-seq2 
must be sequenced separately (depicted in Fig.  1B), Pre-
processing of these reads was performed separately from 
the corresponding chromatin libraries and follows a previ-
ously described approach [17]. Briefly, Illumina sequenc-
ing BCL files were converted to fastq files using bcl2fastq 
v.2.18 and reads with cell barcodes matching capture oligo 
indices within an edit distance of 2 bp were retained.

Assigning sample labels based on hash reads
Either from separately sequenced hash libraries (sciPlex-
ATAC-seq2), or the trimmed fastq files containing com-
bined information (sciPlex-ATAC-seq3), bonafide hash 
labels were retrieved for sample assignment if the first 
10nt of read 2 were an exact match to one of the hash 
indices employed for a given experiment. Hash reads 
were then grouped by their cell barcodes and collapsed 
based on UMIs within Read 1. Ultimately we obtain a 
vector of hash oligo UMI counts hi for each nucleus i in 
the experiment.

Each nucleus was assigned to the treatment well from 
which it came by testing whether hash reads from each 
nucleus were enriched for a particular hash barcode. 
Hash UMIs within each nucleus were compared against 
a background distribution generated by averaging hash 
UMI counts within “nuclei” that did not exceed the 
minimum chromatin fragments per cell threshold (often 
attributed to nuclear debris). For each nucleus, hash UMI 
enrichment over background was assessed using a chi-
squared test and labels were only assigned to nuclei with 
an adjusted (Benjamini-Hochberg) P-value < 0.05.

To use hash count information to distinguish singleton 
nuclei from multiplets or debris, enrichment scores were 
then calculated for each nucleus. Enrichment scores are 
defined as the ratio of the most abundant hash barcode 
to the second most abundant hash barcode within a given 
nucleus. Nuclei in which the most abundant hash was at 
least α-fold more abundant than any other hash barcode 
were considered singletons, while those not exceeding 
this threshold were considered multiplets or debris. α 
was determined on a per-experiment basis by examin-
ing the distribution of enrichment scores (see Fig. 1e) and 

selecting a value (at minimum an enrichment score of 
2) distinguishing labeled and unlabeled cells. Ultimately, 
given the above criteria well-labeled nuclei met the fol-
lowing criteria: 1) At least 10 total hash UMIs with 2) an 
adjusted P-value < 0.05 enriched over background, and 3) 
a minimum enrichment score of α.

sciPlex‑ATAC‑seq data processing and filtering
For each experiment, the final set of cells used for down-
stream analyses was required to meet the hashing cri-
teria above, as well as pass quality thresholds regarding 
chromatin accessibility profiles. First, bam files contain-
ing aligned barcoded chromatin fragments were pro-
cessed into Arrow files using the ArchR (version 0.9.5) 
package [30] with the following arguments; filterFrags = 
500 and filterTSS = 3. Likely-doublets were then identi-
fied based on chromatin profiles using a modified ver-
sion of the scrublet [25] algorithm, which has been 
described in detail previously [2]. Briefly, doublets were 
simulated as the sums of random pairs of cells using the 
binarized cell-by-tile matrix (500 bp genomic windows). 
LSI-based dimensionality reduction was performed on 
the log(TF)*log(IDF) transformed matrix. Note that the 
inverse document frequency (IDF) term in this transfor-
mation was derived prior to simulating doublets. Doublet 
scores reflect the fraction of simulated doublets within 
the set of nearest neighbors of a cell in the reduced 
dimension (dim = 49) space. Ultimately, the top 10% of 
cells from each experiment with the highest doublet 
scores were removed.

While the ArchR package includes a similar doublet 
calling algorithm [30], we were unable to obtain satisfy-
ing structure or clustering from the iterative-LSI dimen-
sionality reduction framework on which ArchR is based. 
Therefore, we did not use ArchR for tasks requiring its 
implementation of dimensionality reduction.

Processing and analysis of species‑mixing experiments
To remove cells with low coverage, chromatin fragments 
per-cell cutoffs were selected based on the overall distribu-
tion within an experiment. Cells were also removed if they 
had fewer than 10 assigned hash UMIs. For each remaining 
cell barcode we tallied the number of reads uniquely align-
ing to human and mouse chromosomes (from the hybrid 
genome). Species collisions (likely doublets) were defined 
as cell barcodes with < 90% of fragments aligned to a sin-
gle species. We then assessed how many species collisions 
were captured solely based on hash criteria defined above 
(i.e. low hash enrichment scores).

Dimensionality reduction and trajectory analysis
Using the binarized cell by tile matrix (500 bp genomic bins), 
UMAP projections of assayed cells were generated with 
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Monocle3 to visualize the chromatin profiles in two dimen-
sional space. Prior to dimensionality reduction, the cell by 
tile matrix was first filtered to only include genomic tiles 
accessible within at least 0.5% of assayed cells. This matrix 
was then preprocessed using the Monocle3 function ‘pre-
process_cds’ with the following parameters, method = "LSI", 
num_dimensions = 50. Dimensionality reduction and initial 
clustering was then performed using the ‘reduce_dimen-
sions’ function with arguments: ‘reduction_method = 
UMAP’, ‘preprocess_method = LSI’, and ‘cluster_cells’ func-
tion with argument: ‘reduction_method = UMAP’ in mono-
cle3. Note that for sciPlex-ATAC-seq3 experiments, prior to 
the dimensionality reduction step above, the first LSI com-
ponent was removed, which improved cluster resolution as 
has been described previously for data of this type [2].

Defining accessible peaks
Using the initial cluster assignments defined through the 
monocle3 framework above, fixed-width (501  bp) accessi-
ble genomic regions in each experiment were identified with 
ArchR. Specifically, replicate pseudobulk tracks were gener-
ated for Monocle3-defined clusters of cells using the ArchR 
function, “addGroupCoverages”. Peaks were then called using 
MACS2 [56] from these simulated replicate coverage tracks 
using the ArchR function “addReproduciblePeakSet”, again 
grouping cells by Monocle3-defined clusters. Finally, using 
the resulting peak calls, a cell by peak matrix was generated 
using the ArchR function “addPeakMatrix”. Rather than call-
ing peaks de-novo for the MLR perturbation screen data-
set (Fig. 5), peaks called with the multi-donor MLR dataset 
(Fig. 4) were used, facilitating cross-experiment comparisons.

Viability curves
Viability curves shown in Supp. Figure  4 were generated 
similarly to our previous work [17]. To model cell recov-
ery as a function of drug dose, we first grouped per-well 
filtered single cell ATAC-seq cell counts by drug. These 
counts were then passed to the drm() function from the drc 
R package [57] with the model formula ‘cells ~ log_dose’ 
and the LL.4() model family function. This procedure fits a 
log-logistic model with the following form:

Above, the lower and upper asymptotic limits of the 
response are encoded by c and d , respectively. b captures 
the steepness of the response curve and e represents the 
half-maximal ‘effective dose’ (ED50).

Dose response analysis
Using the peaks defined across cells from a given 
experiment, we applied a linear regression framework, 

f (x; b, c, d, e) = c +
d − c

1+ exp(b(ln x − ln e))

implemented in Monocle3, to identify sites with acces-
sibility altered in a drug and dose-specific manner. For 
each peak we fit the following logistic regression model 
to its accessibility across individual nuclei:

Where Yi is a binary response variable for peak i (1 = 
“open” or 0 = “closed”),d is the log-transformed dose of 
the compound being evaluated, f  is the log-transformed 
number of chromatin fragments within the nucleus, and 
t is the ArchR defined TSS enrichment score for the 
nucleus. For each model, we first subset cells to include 
only those relevant for determining a drug’s effect on 
a peak’s accessibility. To assess the effects on peak P in 
cells of type C when treated with drug D, we include in 
C, all cells treated with any dose of D. Additionally C 
includes cells treated with the vehicle control. For each 
drug D, peaks were only included in the analysis if acces-
sible within at least 1% of C. The model above thus 
relates the accessibility of P across the subset of cells C. 
Peaks were determined to be differentially accessible 
if their fitted models include a dose term βd that is sig-
nificantly different from zero as assessed by a Wald test 
(Benjamini–Hochberg adjusted). Prior to correcting for 
multiple testing, values for terms are pooled across all 
compounds and all analyzed peaks prior to correction for 
multiple testing.

Pseudodose trajectories
Pseudodose trajectories for each drug were generated 
by repeating the dimensionality reduction procedure 
described above on the peak-by-cell matrix restricted 
to the subset of cells within each drug-treatment group 
including vehicle controls. After performing dimen-
sionality reduction and running UMAP, we fit a princi-
pal graph to the data using the learn_graph() function 
in Monocle3. We defined the origin (roots) of the tra-
jectory by first assigning each cell to their nearest 
graph node. Nodes for which a majority of the assigned 
cells were treated with vehicle were called root nodes. 
For all remaining cells, their pseudodose Ψ was defined 
as the geodesic distance between their assigned node 
and a root node. For comparisons between pseudodose 
values and actual treatment doses, cells were grouped 
based on their pseudodose values using k-means clus-
tering (k = 10) and the mean value was assigned to all 
cells within the group.

As described previously [31], to generate smoothed 
accessibility profiles for each peak (as in Fig. 3D), grouped 
cells were further subdivided into groups containing at 
least 50 and no more than 100 cells. Aggregate accessi-
bility profiles were then generated for each group from 

logit(Yi) = β0 + βdd + βf f + βt t
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binary data of individual cells, creating a matrix A such 
that  Aij contains the number of cells in group j for which 
peak i is accessible. Importantly, we preserved the average 
group pseudodose value ψj and overall cell-wise accessi-
bility  Sj for cells in each group i. We then fit the following 
model to the binned accessibility within each group:

Where  Ai is the mean of a negative binomial valued 
random variable of cells in which site i is accessible. The 
ψ̃ and S̃ variables were smoothed with a natural spline 
during fitting. Smoothed values were retrieved for each 
peak and pseudodose bin via the model_predictions() 
function in Monocle3.

Motif enrichment analysis
A binary peak by motif matrix was generated for our exper-
iments using the ArchR function addMotifAnnotations 
with the argument motifSet = cisbp. Using this matrix, we 
then applied a logistic regression model that uses the pres-
ence or absence of individual motifs in each peak to predict 
whether the site had a particular accessibility trend (open-
ing, closing, or unchanged). The model had the formula:

Where ln(Atrend) is a binary indicator of a site’s acces-
sibility trend (i.e. opening or not) and Mi represents 
the presence or absence of motif i within a site. To find 
motifs enriched within opening, closing and unchanged 
sites, this model was applied separately for each accessi-
bility trend identified within each treatment condition. A 
motif i was identified as enriched within peaks of a given 
trend if its βiMi was significantly predictive of a site’s 
accessibility trend, as determined by two-tailed z-test 
(Benjamini–Hochberg adjusted p < 0.05).

Integration of single cell ATAC‑seq and single cell RNA‑seq 
data
To directly relate single cell chromatin accessibility pro-
files with previously determined transcriptomes from the 
same chemical screen [17], we used the ArchR function 
addGeneIntegrationMatrix which employs a label trans-
fer algorithm developed previously [29]. Using the gene 
score matrix calculated by ArchR and the previously 
generated RNA count matrix for the chemical screen, 
we performed an unconstrained integration (i.e. allow-
ing cells to find closest match to any cell in the RNA 
data) and assigned predicted treatment labels based 
on that of the resulting assigned cell transcriptome. To 
directly compare drug effects on gene activity (as meas-
ured by ATAC) and gene transcription (as measured by 
RNA), we fit a genes (library size-factor adjusted) gene 

ln(Ai) = β0 + β
ψ
ψ + β

S
S

ln(Atrend) = β0 + βiMi.

score (ATAC) or UMI count (RNA) recorded from each 
nucleus with a generalized linear model:

Where Y is a quasipoisson-valued random variable and 
d is the log-transformed dose of the compound being 
examined. We applied this model to our data (either the 
gene score matrix or RNA count matrix) as described 
above for the dose response analysis of peak accessibility. 
Ultimately, we compared the coefficients for d attained 
for each gene when we used the gene score matrix versus 
the RNA count matrix.

Identifying cicero connections
We identified co-accessible sites using the Cicero R pack-
age for Monocle3 (version 1.3.4.5) [31]. For the chemical 
screen experiment cicero was run using all filtered cells 
from the experiment. To calculate co-accessibility scores, 
Cicero cell data set objects were generated using the 
make_cicero_cds function with default parameters on the 
reduced dimension cell by peak matrix and correspond-
ing UMAP coordinates determined by Monocle3 as 
described above. Co-accessibilty scores were then calcu-
lated using the run_cicero function with default param-
eters. When calculating promoter versus distal pairs, any 
site within 500 bp of an annotated TSS was labeled as a 
promoter, while all other sites were labeled as distal.

Regression models for gene expression
Similar to the approach used previously [31], we fit two 
regression models that predict, for each promoter region, 
the coefficient βdd (defined above) describing the effect 
of drug dose on gene expression (measured by sciPlex-
RNA-seq). We excluded promoters which did not have 
an accessible promoter (defined as having an ATAC peak 
within 500  bp of the TSS) or did not have a drug-dose 
coefficient significantly different from 0. For each drug, 
the model was applied to the following number of pro-
moters: SAHA: n = 4101, Dex: n = 1456, Nutlin3A: n = 
1280, BMS: n = 1181. For the first set of models (“pro-
moter motifs”) the features are binary values for each 
motif, indicating whether it is present within at least one 
accessible peak overlapping the promoter (TSS ± 500 bp). 
The second set of models (“promoter and distal motifs”), 
the features are the promoter motif indicators plus a sec-
ond set of real-valued variables encoding information 
regarding distal sequence motifs. Specifically, the distal 
motif variable for each motif and TSS equals the high-
est cicero co-accessibility score from a promoter peak for 
that TSS to any connected distal peak which possesses 
that motif. If no connected distal peak contains the motif, 
the distal motif variable is assigned a value of 0. The mod-
els were trained using elastic net regression. Peaks were 

ln(Yi) = β0 + βdd
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required to have a co-accessibility score of 0.1 or greater 
to be considered connected.

Modeling fraction of reads in peaks (FRIP) 
over drug‑treated T‑cell activation trajectory
FRIP values were determined for each cell as the total 
number of fragments overlapping called peaks divided by 
the total number of fragments recovered. To test whether 
the drug dose variable significantly contributed to altered 
FRIP values along the T-cell activation trajectory, we 
fit the following model to the FRIP values for each cell 
within a drug treatment group:

Where Xi is the FRIP score for nucleus i, and assumed 
to be gaussian distributed. The variable ψ̃ represents a 
cell’s pseudotime trajectory position and was smoothed 
with a natural spline during fitting. The variable d repre-
sents drug dose. We then applied the log ratio test (LRT) 
to evaluate whether the above model was a better fit than 
the following reduced model, which excludes the dose 
interaction term d:

FRIP was determined to be significantly affected by 
treatment dose if the full model was found to significantly 
improve prediction by LRT ((pr > Chisq) < 0.05). Separate 
models were fit and examined for cells from each drug treat-
ment group and their corresponding vehicle-treated cells.
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Additional file 1:  Supplementary Figure Fig 1.  Comparison of various 
nuclei permeabilization and hash extension strategies. a) Schematic of 
experimental design for comparing 6 distinct library preparation 
procedures in parallel. Human (A549) and mouse (NIH‑3T3) cells were 
distributed into a 96‑well culture plate (Top) where nuclei were isolated 
and permeabilized with one of three solutions. After permeabilization 
nuclei in each well were incubated with unique hash labels and then 
fixed.  After fixation nuclei were pooled based on their permeabilization 
buffers, resulting in 3 pools of hashed nuclei from both species.  
Species‑mixed nuclei were then distributed into a second 96‑well plate, as 
shown, where hash extension was performed with one of two enzymes/
reagents. b) Boxplots depicting distributions of quality metrics for cells 
exposed to distinct library preparation strategies. c) Scatter plots of unique 
human and mouse fragments per cell, faceted by library preparation 
conditions. Colors show species assignments based on the dominating 
associated hash label for each cell. d) Scatter plots of unique human and 
mouse fragments per cell, faceted by library preparation conditions. 
Colors identify doublets assigned based on the inability to confidently 
assign a dominant associated hash label within a cell.  Supplementary 
Figure Fig 2. Fixation does not increase doublet formation.  a) Scatter‑
plots of unique mouse and human fragments recovered per cell from 
samples where cells were mixed before (Pre) or after (Post) hashing and 
fixation.  b) Hash enrichment scores from pre and post‑hashing pooled 
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cell‑types.  Supplementary Figure Fig 3. Hashing is compatible with 
high throughput chemical epigenomic screens. a) Scatter plot showing 
the relationship between recovered fragments per cell and TSS 
enrichment. Dotted lines represent baseline per‑cell cutoffs for each value. 
Cells passing these cutoffs were further filtered based on hashing (see 
methods)  b) UMAP position of remaining doublets, after hash‑based 
filtering, identified with a modified version of scrublet [1] for scATAC data 
[2].  c) Distribution of hash umi counts recovered per cell.  Vertical line 
represents a filter cutoff (< 10) to remove low quality cells.  d) Distribution 
of hash enrichment scores for all cells.  The hash enrichment score is 
defined as the number of hash umis recovered from the most abundant 
ID divided by the second most abundant ID within a cell. Vertical line 
represents a filter cutoff (enrichment > 2) to remove low quality cells.  
Supplementary Figure Fig 4.  SciPlex‑ATAC‑seq metrics by chemical 
treatment. a) Number of cells (passing filters) recovered per condition. b) 
Distributions of chromatin fragments recovered per cell by condition. c) 
Distribution of TSS enrichment values per cell by condition. Significance of 
relationships between drug dose and TSS enrichment was evaluated 
using the ‘glm’ package in R with the following model: ‘TSSenrichment ~ 
ln(dose) + frags_per_cell’ (Dex. dose coefficient = ‑0.02,  p =  0.11; 
Nutlin3A dose coefficient = 0.019,  p =  0.388).  d) Distribution of hash 
enrichment scores per cell by condition.  The hash enrichment score is 
defined as the number of hash umis recovered from the most abundant 
ID divided by the second most abundant ID within a cell. Vertical line 
represents a filter cutoff (enrichment > 2) to remove low quality cells.  
Supplementary Figure Fig 5.  Viability curves can be fit to the number of 
cells recovered at each treatment dose. Curves were fit to cell counts 
recovered from each dose treatment of BMS345541, dexamethasone, 
nutlin‑3a and SAHA as previously described [3].  Supplementary Figure 
Fig 6.   Reproducible clustering facilitates accessible peak calling.  a) 
UMAP projections of chromatin profiles from chemical screen, faceted by 
replicate wells for each treatment. b) UMAP projection of chromatin 
profiles colored by clusters identified with Monocle3 [4]. c) Number of 
accessible peaks identified from each cluster with ArchR [5] and their 
annotations (UCSC).  Supplementary Figure Fig 7.  Drug‑specific motif 
enrichments are consistent with known compound mechanisms of 
action.  Heatmaps depicting up to 10 most significantly enriched motifs 
per drug within peaks found to close with treatment.  Supplementary 
Figure Fig 8.  Browser tracks of pseudobulk accessibility read coverage for 
cells grouped by treatment dose for each compound used. Y‑axes are the 
same for all tracks (range 0‑20) and represent pseudo bulk read coverage, 
normalized by reads within promoters for each group.  Regions represent 
loci identified as significantly altered for individual drugs.  Asterisks 
indicate few cells were contained within the group ( * < 50, ** < 10).  
Supplementary Figure Fig 9.  Trajectory analysis reveals progression of 
chromatin state changes in response to drug treatment. a) UMAP 
embedding of cells from the dexamethasone treatment group (including 
vehicle controls), colored by dose of treatment. Red dots reflect positions 
identified as root nodes for the drug response trajectory (see methods). b) 
Barplots depicting the proportion of cells treated with each dose of 
dexamethasone within each pseudodose bin. c) Distribution of cells 
treated with each dose of dexamethasone across pseudodose chromatin 
states. d‑f ) Same as A‑C but for cells treated with BMS345541. g‑i)  Same as 
A‑C but for cells treated with Nutlin‑3A.  Supplementary Figure Fig 10.  
Dex‑responsive chromatin states predict transcriptional response. a) 
Smoothed accessibility scores across Dex‑pseudodose for three classes of 
identified differentially accessible sites (opening, closing, and dynamic). 
Closing and opening sites were defined as sites with a maximum 
accessibility score occurring within the first or last 20 pseudotime bins 
(out of 100 bins), respectively.  Dynamic sites have a maximum score in 
the intervening pseudotime bins. b) Top motifs explaining whether a 
distal Dex‑DA site is classified as closing (blue), opening (red) or static 
(non‑DA, green). c) same as E, but for Dex‑DA sites overlapping gene 
promoters. d) Raw accessibility scores (fraction cells accessible in each bin) 
across Dex‑pseudodose for three classes of identified differentially 
accessible sites (opening, closing, and dynamic). e) Dex‑responsive DE 
Gene expression variation explained by models taking into account 
sequence elements within promoters alone, or within promoters and 
distal co‑accessible sites. The value (1.54) above the right bar reflects the 
fold increase in predictive power with models which include distal 
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co‑accessible sites.  f ) Sequence elements with largest regression 
coefficients from promoter (grey) or distally connected sites (red) when 
predicting Dex‑affected gene responses.  Supplementary Figure Fig 11.   
Raw accessibility scores (fraction cells accessible in each bin) across 
SAHA‑pseudodose for three classes of identified differentially accessible 
sites (opening, closing, and dynamic).  Supplementary Figure Fig 12.  
Schematic of sciPlex‑ATAC3 combinatorial indexing strategy.  Supple‑
mentary Figure Fig 13.  Capture oligos with increased affinity enable 
hashing with ligation based combinatorial indexing.  a) Cartoon 
representations of varied hash and capture oligos tested. The hash and 
capture oligos are represented by the bottom and top molecules, 
respectively. b) Scatter plots of unique human and mouse fragments per 
cell, faceted by hash and capture oligos used during library preparation. 
Colors show species assignments based on the dominating associated 
hash label for each cell. c) Scatter plots of human and mouse fragments 
per cell, faceted by library preparation conditions. Colors identify doublets 
assigned based on the inability to confidently assign a dominant 
associated hash label within a cell. d) Histogram of hash label enrichment 
scores for each nucleus, where  Enrichment Score = x/y , where  x  = 
counts for the most common hash label within a cell and  y  = the second 
most common hash label within a cell. For cells with only one hash ID, the 
enrichment score was set as the number of hash reads (to avoid infinite 
values).  Supplementary Figure Fig 14.  Annotating immune cell types 
recovered from mixed lymphocyte reactions.  a) Diagram of experimental 
culture well layout for all conditions. b) UMAP representation of chromatin 
profiles from recovered cells colored by clusters identified with Monocle3 
[4]. c) Scatter plot showing the relationship between recovered fragments 
per‑cell and TSS enrichment. Dotted lines represent baseline per‑cell 
cutoffs for each value. Cells passing these cutoffs were further filtered 
based on hashing (see methods) d) Heatmap depicting the fraction of 
cells from each cluster (shown in B) with transferred cell type assignment 
labels from published scRNA‑seq on human PBMCs (10X genomics, 
pbmc_10k_v3). e) Proportion of cells from each stimulation‑alone 
condition within each cluster.  f ) UMAPs colored by smoothed gene‑
marker accessibility scores.  Gene accessibility scores were determined 
using ArchR and smoothing was performed with MAGIC [6], as 
implemented in the ArchR package [5].  Supplementary Figure Fig 15.  
Percentage of resting T‑cells (a), B‑cells (b), NK/unknown cells (c) 
Monocytes (d) recovered from each condition.  Variation in cell type 
recovery was determined by separately quantifying each of three 
biological replicates for all conditions. Red asterisks indicate significant 
difference in the mean relative to no‑stim for each responder (Student’s 
t‑test; *:  p < 0.05; **:  p < 0.01, ***:  p <  0.001; ****:  p <  0.0001).  
Supplementary Figure Fig 16.  Activated T‑cell recovery with 
sciPlex‑ATAC3 correlates well with CFSE staining. a) Scatter plot showing 
the relationship between sciPlex‑ATAC3 based proportions of activated 
T‑cells and CFSE staining‑based measurements of lymphocyte prolifera‑
tion across all conditions (excluding stim. alone).  b) The same scatterplot 
as in a., but excluding bead‑stimulated samples. c‑f ) examples of FACS 
populations (top) and CFSE staining (bottom) in unstimulated (left) and 
bead stimulated (right) conditions for each responder.  Supplementary 
Figure Fig 17.  Allogeneic stimulations elicit responses from distinct 
regulatory sites associated with T‑cell activation and differentiation. a) 
Heatmap of raw accessibility scores (fraction cells accessible in each bin) 
across the pseudotime trajectory within activated T‑cells only. b&c) Top 
motifs explaining whether a distal (B) or promoter‑proximal (C) DA site is 
classified as closing (blue), opening (red) or static (non‑DA, green). d) 
Ranked adjusted  p ‑values for motif enrichment within DA sites which are 
open in MLR (allo)‑stimulated cells compared with bead‑stimulated cells. 
e) Browser tracks of pseudobulk accessibility read coverage for cells 
grouped into five trajectory bins (top) or by stimulation type (bottom two 
tracks). Y‑axes are the same for all tracks (range 0‑30) and represent 
pseudo bulk read coverage, normalized by reads within promoters for 
each group.  Supplementary Figure Fig 18.  SciPlex‑ATAC3 supports 
combinatorial chemical perturbations within mixed lymphocyte reactions. 
a) Illustration of multi‑plate experimental culture and treatment scheme. 
b) Scatter plot showing the relationship between recovered fragments per 
cell and TSS enrichment. Dotted lines represent baseline per‑cell cutoffs 
for each value. Cells passing these cutoffs were further filtered based on 

hashing (see methods) c) Barplots show the number of filtered cells 
recovered from each treatment group.  d) UMAP representation of 
chromatin profiles from recovered cells colored broad cell‑type 
annotations ( n = 36,511 ). e) UMAPs colored by smoothed gene‑marker 
accessibility scores. Gene accessibility scores were determined using 
ArchR and smoothing was performed with MAGIC [6], as implemented in 
the ArchR package.  Supplementary Figure Fig 19.  Chemical 
perturbations alter the distribution of cell types and phenotypes 
recovered from mixed lymphocyte experiments. a) UMAPs of nuclei 
faceted by stimulation groups. b) UMAPs of nuclei faceted by compound/
combination, with individual nuclei colored by the relative dose 
treatments.  Supplementary Figure Fig 20.  Percent recovery of dead/
irradiated cells in relation to treatment group and dose.  Supplementary 
Figure Fig 21.  Allo‑activated T‑cells are phenotypically perturbed by 
immunosuppressants compounds.  a)  Percentage of activated T‑cells 
recovered from vehicle treated conditions for each stimulation condition.  
Variation in cell type recovery was determined by separately quantifying 
two vehicle treated biological replicates from each chemical treatment for 
the three stimulation conditions ( n =  16). Red asterisks indicate 
significant difference in the mean relative to no‑stim for each responder 
(Student’s t‑test;  ****:  p <  0.0001). See methods regarding bead 
stimulation conditions. b) UMAP representation of chromatin profiles of 
T‑cells from the allo‑stimulated wells of the MLR‑drug experiment, colored 
by pseudotime bins as determined using the  learn_graph  function from 
Monocle3 and using resting T‑cells as the trajectory roots. c)  Distribution 
of frags per cell recovered within bins across the T‑cell activation 
trajectory. d) UMAP representation of chromatin profiles from only the 
allo‑activated T‑cells faceted by compound/combination treatment and 
colored by relative dose.  e) Distribution of pseudotime positions of 
activated T‑cells from allogeneically (allo) stimulated conditions faceted by 
compound/combination treatment and grouped by relative dose. Figures 
b‑e only reflect data from nuclei recovered from allo‑stimulated 
conditions.  Supplementary Figure Fig 22.  Within allo‑activated T‑cells, 
immunosuppressant treatment primarily impedes increased accessibility. 
a) Heatmap showing smoothed accessibility scores for peaks found to 
change ( p <  0.05) across the pseudotime trajectory, restricted to only 
allo‑activated T‑cells. Pseudotime bins reflect the same 20 value ranges 
used in figure 4c. b)Heatmap of raw accessibility scores (fraction cells 
accessible in each bin) across the pseudotime trajectory within 
allo‑activated T‑cells only. c&d) Top motifs explaining whether a distal ( n 
=  592; B) or promoter‑proximal ( n = 515; C) DA site is classified as closing 
(blue), opening (red) or unchanging (non‑DA, green). e&f ) Ranked 
adjusted  p ‑values for motif enrichment within DA sites which open early 
( n =  146) (D) or late ( n =  961) (E) across the trajectory within allo‑acti‑
vated T‑cells.  Early and late opening sites were defined as those in which 
the half maximum smoothed accessibility was found within the first 10 (of 
20) pseudotime bins (early), or latter 10 bins (late).

Additional file 2: Supplementary Table 1. Number of differentially 
accessible sites, either promoter proximal or distal, found to open or close 
in response to each treatment. The distal category includes all non‑
promoter element types (distal, intronic, exonic). Opening and closing 
corresponds to sites with regression coefficients for drug dose > 0, or < 
0, respectively. Supplementary Table 2. Sample statistics for recovered 
nuclei from each sciPlex‑ATAC3 condition. Supplementary Table 3. Table 
of the hash barcode sequences associated with samples for each experi‑
ment. Supplementary Table 4. List of oligo sequences used for loading 
Tn5. Supplementary Table 5. Mixed lymphocyte reaction treatment 
doses. For drug combinations, doses are listed in respective order. Supple‑
mentary Table 6. Summary statistics for ATAC sequencing reads.
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