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The concurrent profiling of multiple classes of molecules, e.g. 
RNA and DNA, within single cells has the potential to reveal 
causal regulatory relationships and to enrich the utility of or-
ganism-scale single cell atlases. However, to date, nucleic acid 
‘co-assays’ rely on physically isolating each cell, limiting their 
throughput to a few cells per study (fig. S1A and table S1) (1–
6). 

Single-cell combinatorial indexing (“sci”) methods use 
split-pool barcoding to uniquely label the nucleic acid con-
tents of single cells or nuclei (7–13). Here we describe sci-
CAR, which jointly profiles single cell chromatin accessibility 
and mRNA in a scalable fashion. Sci-CAR effectively com-
bines sci-ATAC-seq and sci-RNA-seq into a single protocol 
(Fig. 1): (i) Nuclei are extracted, with or without fixation, and 
distributed to wells. (ii) A first RNA-seq ‘index’ is introduced 
by in situ reverse transcription (RT) with a poly(T) primer 
bearing a well-specific barcode and a unique molecular iden-
tifier (UMI). (iii) A first ATAC-seq index is introduced by in 
situ tagmentation with Tn5 transposase bearing a well-spe-
cific barcode. (iv) All nuclei are pooled and redistributed by 
FACS to multiple plates. (v) After second-strand synthesis of 
cDNA, nuclei in each well are lysed, and the lysate split to 
RNA and ATAC-dedicated portions. (vi) To provide a second 
priming site for amplification of 3′ cDNA tags, the RNA-
dedicated lysate is subjected to transposition with unindexed 
Tn5 transposase. 3′ cDNA tags are amplified with primers 
corresponding to the Tn5 adaptor and RT primer. These 

primers also bear a well-specific barcode that is the second 
RNA-seq index. (vii) The ATAC-seq-dedicated lysate is ampli-
fied with primers specific to the barcoded Tn5 adaptors from 
step iii. These primers also bear a well-specific barcode that 
is the second ATAC-seq index. (viii) Amplicons from RNA-seq 
and ATAC-seq-dedicated lysates are respectively pooled and 
sequenced. Each sequence read is associated with two bar-
codes corresponding to each round of indexing. As with other 
sci- protocols, most nuclei pass through a unique combina-
tion of wells, receiving a unique combination of barcodes that 
can be used to group reads derived from the same cell. Be-
cause the barcodes introduced to RNA-seq and ATAC-seq li-
braries correspond to specific wells, we can link the mRNA 
and chromatin accessibility profiles of individual cells. 

We applied sci-CAR to a cell culture model of cortisol re-
sponse, wherein dexamethasone (DEX), a synthetic mimic of 
cortisol, activates glucocorticoid receptor (GR), which binds 
to thousands of locations across the genome, altering the ex-
pression of hundreds of genes (14–17). We collected lung ad-
enocarcinoma-derived A549 cells after 0, 1 or 3 hrs of 100 nM 
DEX treatment, and performed a 96 x 576 well sci-CAR ex-
periment. The three timepoints were each represented in 24 
wells during the first round of indexing, while the remaining 
24 wells contained a mixture of HEK293T (human) and 
NIH3T3 (mouse) cells (fig. S1B). 

We obtained sci-RNA-seq profiles for 6,093 cells (median 
3,809 UMIs) and sci-ATAC-seq profiles for 6,085 cells 
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Although we can increasingly measure transcription, chromatin, methylation, etc. at single cell resolution, 
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we compare the pseudotemporal dynamics of chromatin accessibility and gene expression, reconstruct 
the chromatin accessibility profiles of cell types defined by RNA profiles, and link cis-regulatory sites to 
their target genes on the basis of the covariance of chromatin accessibility and transcription across large 
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(median 1,456 unique reads) (fig. S1, C to E). For both data 
types, reads assigned to the same cell overwhelmingly 
mapped to one species (fig. S1, F and G). We obtained roughly 
equivalent UMIs per cell from ‘RNA-only’ plates processed in 
parallel, albeit at a lower sequencing depth per cell. Aggre-
gated transcriptomes of co-assayed vs. RNA-only plates were 
well-correlated (r = 0.97-0.98; fig. S2). In contrast, although 
co-assayed vs. ‘ATAC-only plates’ were comparable in quality 
and well-correlated in aggregate (fig. S3), ATAC-only plates 
had ~10-fold higher complexity. The lower efficiency of the 
co-assay for ATAC is likely explained by factors including 
buffer modifications and our use of only half the lysate. 

There were 4,825 cells (70% of either set) for which we 
recovered both transcriptome and chromatin accessibility 
data. To confirm that paired profiles truly derived from the 
same cells, we asked whether cells from mixed human-mouse 
wells were consistently assigned as human or mouse. Indeed, 
1,423/1,425 (99%) of co-assayed cells from those wells were 
assigned the same species label from both sci-RNA-seq and 
sci-ATAC-seq profiles (Fig. 2A). 

We next examined the time course of GR activation. DEX 
treatment of A549 cells increased both transcription and pro-
moter accessibility of markers of GR activation, including 
NFKBIA, SCNN1A, CKB, PER1 and CDH16 (14, 16) (fig. S4, A 
and B). Unsupervised clustering or t-SNE visualization of ei-
ther sci-RNA-seq or sci-ATAC-seq profiles readily separated 
clusters corresponding to untreated and DEX-treated cells 
(Fig. 2, B and C). Reassuringly, cells from co-assay plates and 
single-assay plates of either type were intermixed (fig. S4C). 

88% and 93% of co-assayed cells in clusters 1 and 2 of sci-
ATAC-seq data were found in corresponding sci-RNA-seq 
clusters (fig. S4, D and E). Cells with concordant vs. discord-
ant assignments did not significantly differ in read depth (P-
value > 0.1, Welch two-sample t-test), but notably fell on the 
border between clusters 1 and 2 in either t-SNE (Fig. 2D and 
fig. S4F). While most discordant cells (70%) were from 0 hrs, 
the remainder tended to derive from 1 hrs rather than 3 hrs 
(5% of 1 hr vs. 1% of 3 hr cells, P-value = 2.2e-16, Fisher's Exact 
Test). Although we cannot rule out that this is due to imper-
fect clustering, these discordantly assigned cells potentially 
reflect transitional states in GR activation. 

Differential expression (DE) analysis of sci-RNA-seq data 
revealed significant changes in 2,613 genes (5% FDR) (table 
S2). For comparison, a similar analysis with bulk RNA-seq 
data of DEX treatment in A549 cells at 0 vs. 3 hrs (18) identi-
fied 870 DE genes, 536 of which were also DE here. Log2 fold 
changes were well-correlated between the datasets for DE 
genes (r = 0.86, fig. S4G). 

Differential accessibility (DA) analysis of sci-ATAC-seq 
profiles identified significant changes at 4,763 sites (5% FDR) 
(table S3). For comparison, a similar analysis of bulk DNase-
seq data from DEX-treated A549 cells at 0 vs. 3 hrs (18) 

identified 672 DA sites, 544 of were also DA here. Log2 fold 
changes were well-correlated between the datasets for DA 
sites (rho = 0.68, fig. S4H). 

Of our DA sites, 701 (15%) were promoters, of which 175 
overlapped with DE transcripts. Transcripts for genes with 
DA promoters that were not DE were detected in significantly 
fewer cells than genes with DA promoters that were DE (me-
dian 10% vs. 25%, P-value < 5e-5, unpaired two sample per-
mutation test based on 20,000 simulations), suggesting we 
may be insufficiently powered to detect DE at many genes 
with DA promoters. For the 175 genes that are both DA and 
DE, the log2 fold changes were modestly correlated (rho = 
0.63, fig. S4I), with 130/175 (74%) exhibiting directional con-
cordance (exact two-sided binomial test, P-value = 9e-11). 

We ordered cells along a pseudotime trajectory with Mon-
ocle (19) based on the top 1,000 DE genes (fig. S5A). Cells were 
ordered consistently with the time course (Fig. 2E). Of note, 
the aforementioned cells from 1 hour whose cluster assign-
ments were discordant (Fig. 2D and fig. S4F) occurred signif-
icantly earlier in pseudotime than cells with concordant 
assignments (P-value = 3e-5, Wilcoxon rank sum test, fig. 
S5B). Of the 2,613 DE genes, 979 (37%) increased and 1,111 
(43%) decreased in expression along pseudotime, while 523 
(20%) exhibited transient changes (fig. S5, C and D, and ta-
bles S2 and S4). We exploited the co-assay to examine the dy-
namics of chromatin accessibility across RNA-defined 
pseudotime, identifying opening (47%), closing (32%) and 
transient (21%) DA sites (fig. S5E and tables S3 and S5). There 
were eleven genes that showed significant changes in both 
gene expression and promoter accessibility along pseudotime 
(5% FDR for both), with well-correlated dynamics (Fig. 2F 
and fig. S5, F to H). 

We converted the (cell x site) matrix to a (cell x transcrip-
tion factor (TF) motif) matrix, simply by counting occur-
rences of each motif in all accessible sites for each cell (20). 
The motifs of 91/399 (23%) of expressed TFs were DA across 
the treatment conditions (5% FDR) (tables S6 and S7). Where 
ChIP-seq data was available for the same time course (18), we 
observed consistent dynamics of increasing motif-associated 
accessibility (fig. S6A) and TF binding to accessible sites (fig. 
S6B). Motif accessibility dynamics across expression-defined 
pseudotime are summarized in fig. S6C. The motif of the ca-
nonical glucocorticoid receptor NR3C1 was the most acti-
vated, even though its expression decreased (Fig. 2G), 
consistent with its activation by recruitment from the cytosol 
rather than by increased expression. In contrast, KLF9 is a 
direct target of GR activation via a feed forward loop (21). 
Consistent with this, we observe that both its expression and 
its motif accessibility increase along pseudotime (Fig. 2G and 
fig. S6, D and E). 

Single-cell RNA sequencing studies have recently charac-
terized the transcriptomes of diverse cell types represented 
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in the mammalian kidney (22–24). However, little is known 
about the epigenetic landscapes that underlie these cell type-
specific gene expression programs. To investigate this, we iso-
lated and fixed nuclei from whole kidneys of two 8-week male 
mice (fig. S7A). From one sci-CAR experiment, we obtained 
sci-RNA-seq profiles for 13,893 nuclei (median 1,011 UMIs; 
fig. S7B) and sci-ATAC-seq profiles for 13,395 nuclei (median 
7,987 unique reads; fig. S7C). There were 11,296 cells for 
which we recovered both transcriptome and chromatin ac-
cessibility profiles. 

We compared sci-CAR transcriptomes with a recently 
published single cell RNA-seq dataset of the same tissue gen-
erated by Drop-seq (24). After correcting for gene length bi-
ases (Drop-seq is biased toward shorter transcripts, and sci-
RNA-seq toward longer transcripts) aggregated transcrip-
tomes were reasonably well correlated (r = 0.73, fig. S7D). 
Semi-supervised clustering of 10,727 sci-CAR transcriptomes 
(>500 UMIs) identified 14 groups, ranging in size from 74 
(0.7%) to 2,358 (22.0%) cells (Fig. 3A and fig. S7, E and F). 
Established markers identified nearly all cell types (fig. S8, A 
and B). The expression profiles of proximal tubule cells sepa-
rate them into three subtypes including S1/S2 cells (Slc5a12+, 
Gatm+, Alpl+, Slc34a1+), S3 type 1 cells (Slc34a1+, Atp11a+), 
and S3 type 2 cells (Atp11a+, Rnf24+) (fig. S8C) (25, 26). The 
smallest cluster is positive for cell cycle progression markers 
(Mki67 and Cenpp), and may represent an actively proliferat-
ing subpopulation (fig. S8D) (25, 26). Cell type proportions 
were well-correlated between replicate kidneys, with the ex-
ception of paranephric body adipocytes (1.2% vs. 0.4%), likely 
due to technical variation in kidney dissection as these reside 
superficial to the renal fascia (fig. S7E). 

We identified 8,774 genes that were DE across the 14 cell 
types (5% FDR), including 1,771 with >2-fold greater expres-
sion in the highest vs. second highest cell type (fig. S9, A and 
B, and tables S8 and S9). New marker genes were identified, 
such as Daam2 for renal pericytes and Calcr for collecting 
duct intercalated cell B (fig. S9, C and D) (25, 26). We exam-
ined expression of solute carrier transporters (SLCs), as these 
correspond to a principal function of the kidney. 208/345 
(60%) of these were DE in subsets of renal tubule cell types, 
many corresponding to known and potentially novel reab-
sorption specificities (Fig. 3B, fig. S9E, and table S10). 

We compared aggregated sci-CAR chromatin accessibility 
profiles with published bulk ATAC-seq data on adult mouse 
kidney (18), and found them to be reasonably well correlated 
(r = 0.75; fig. S10, A and B). Across all genes, aggregate pro-
moter accessibility correlated with aggregate gene expression 
(rho = 0.26; fig. S10C). Nonetheless, a significant challenge 
for single cell ATAC-seq data, relative to single cell RNA-seq 
data, is the sparsity of the resulting matrices (8). Thus, our 
initial efforts to cluster co-assayed cells based solely on their 
ATAC-seq profiles failed to discover the expected diversity of 

cell types. We therefore sought to leverage the co-assay aspect 
of these data to recover the chromatin landscapes of individ-
ual cell types. 

As a first approach, we simply annotated cell types from 
transcriptional profiles for ~96% of the 11,296 cells that were 
successfully co-assayed. We then aggregated ATAC-seq signal 
for each cell type separately, followed by peak calling (27). As 
a second approach, we also developed an algorithm to com-
bine the ATAC-seq profiles of cells with highly similar RNA-
seq profiles prior to clustering (fig. S7A). For cells from each 
RNA-seq-defined cell type, we identified subsets of cells with 
highly similar expression profiles (a mean of 50 cells assigned 
to each of 222 ‘pseudo-cells’). We then aggregated the ATAC-
seq profiles of each pseudo-cell, and performed t-SNE on 
these. In contrast with single-cell ATAC-seq data, pseudo-cell 
chromatin accessibility profiles corresponding to the same 
cell types clustered together (Fig. 3C). Overall, these analyses 
illustrate how co-assay data can be leveraged to overcome the 
relative sparsity of single cell ATAC-seq data and define chro-
matin accessibility profiles even for closely related cell types. 

We identified 22,026 DA sites across the 14 mouse kidney 
cell types, including 2,096 promoters and 19,930 distal sites 
(5% FDR; Fig. 3D; fig. S10, D and E; and tables S11 and S12). 
In some cases, DA at a gene’s promoter was concordant with 
DE (fig. S11, A and B), but this was the exception rather than 
the rule. Out of 2,096 genes with a DA promoter in at least 
one cell type, 132 genes were also DE (1% FDR) with a >2-fold 
difference between the first and second ranked cell type. Alt-
hough promoter accessibility and expression of these genes 
across cell types are positively correlated (median rho = 0.17), 
the majority (112/132 or 85%) exhibited maximal promoter 
accessibility and gene expression in different cell types (fig. 
S11C). The relatively weaker correlation compared with what 
we observed in the A549 dexamethasone time series (rho = 
0.63; fig. S4I) is potentially a consequence of the fact that in 
the A549 cells, we were comparing changes in promoter ac-
cessibility vs. expression, whereas here we are comparing ab-
solute enrichment of accessibility at promoters vs. 
expression. 

We sought to link distal cis-regulatory elements to their 
target genes based on the covariance of chromatin accessibil-
ity and gene expression across large numbers of co-assayed 
cells. As the sparsity of our single cell profiles makes this chal-
lenging, we worked with the aforedescribed 222 pseudo-cells 
(fig. S12A). For each gene, we computed correlations between 
its expression and the adjusted accessibility of all sites within 
100 kilobases (kb) of its transcriptional start site (TSS) using 
LASSO (least absolute shrinkage and selection operator). 

Within the top 2,000 DE genes (ranked by q-value), we 
linked 1,260 distal sites to 321 genes (median 3 sites per gene, 
out of median 19 sites within 100 kb of TSS tested; fig. S12, B 
and C, and table S13). 44% of sites were linked to the nearest 
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TSS, and 21% to the second nearest TSS (fig. S12D). Distal site-
gene linkages were significantly closer than all possible pairs 
tested (mean 41 kb for links vs. 48 kb for all pairs tested;  
P-value < 5e-5, unpaired permutation test based on 20,000 
simulations; fig. S12E). 

To evaluate the possibility that the links were artifacts of 
regularized regression, we permuted the sample IDs of the 
chromatin accessibility matrix and performed the same anal-
ysis. After this permutation, only 4 links were identified (fig. 
S12B). To control for correlations between closely located ac-
cessible sites in the genome, we separately permuted the peak 
IDs. This yielded 216 links, or just 17% as many links as with-
out permutation (fig. S12B). 

The 321 genes with linked distal sites were specifically ex-
pressed in a variety of cell types (fig. S12F). For example, the 
link with the highest correlation is between distal convoluted 
tubule cell marker gene Slc12a3 and a site 36 kb downstream 
of its TSS and overlapping its last exon (fig. S13). The accessi-
bility of this linked site was modestly more specific to distal 
convoluted tubule cells than the Slc12a3 promoter. In con-
trast, the accessible site closest to the Slc12a3 promoter (only 
216 bp away) was not linked to the Slc12a3 promoter by our 
approach, nor is its accessibility specific to distal convoluted 
tubule cells. Similarly, a marker gene for Loop of Henle cells, 
Slc12a1, is linked to two distal sites (fig. S14), both of which 
exhibit accessibility specific to Loop of Henle cells. In con-
trast, the nearest accessible site (9 kb from the TSS), which 
was not linked, does not exhibit this specificity. 

Links between distal cis-regulatory elements and their 
target genes can be useful for explaining differential expres-
sion across cell types. For example, the cell type-specific ex-
pression of Slc6a18, a marker gene for type 2 proximal tubule 
S3 cells, is not mirrored by cell type-specific promoter acces-
sibility (fig. S11C). However, from our covariance approach, 
its TSS is linked to a site 16 kb away whose accessibility is 
correlated with Slc6a18 expression (Fig. 4A). To quantify the 
utility of the links between distal cis-regulatory elements and 
their target genes identified from sci-CAR data, we con-
structed a linear regression model to predict gene expression 
differences based on chromatin accessibility at promoters 
only vs. promoters together with linked distal sites. Including 
linked distal sites improved predictions by four-fold (P-value 
< 5e-5, paired permutation test based on 20,000 simulations; 
Fig. 4B). 

Our analyses illustrate the advantages of a single cell co-
assay over assays that solely profile transcription or chroma-
tin accessibility. Sci-CAR is compatible with fresh or fixed nu-
clei, and like other sci-seq techniques, can encode multiple 
samples per experiment. Its throughput can potentially be in-
creased by additional rounds of split-pool indexing (13). With 
384 x 384 x 384 sci-CAR, one could potentially co-assay mil-
lions of single cells per experiment. A limitation of sci-CAR is 

the sparsity of the resulting data, particularly with respect to 
chromatin accessibility. This can potentially be overcome in 
the future through protocol optimizations, particularly of 
crosslinking conditions. A second limitation is that although 
we were able to link distal elements and target genes on the 
basis of covariance of accessibility and expression, these data 
remain correlative and involve a minority of DE genes and 
DA elements. 

Notwithstanding these limitations, sci-CAR expands the 
potential of combinatorial indexing for scalably profiling sin-
gle cell molecular phenotypes, and may be particularly useful 
in the context of organism-scale single cell atlases. With fur-
ther development, we anticipate that additional DNA/RNA 
co-assays may be realized by simply integrating other sci-seq 
protocols together with sci-RNA-seq (e.g. methylation +  
transcripts; chromosome conformation + transcripts; DNA 
sequence + transcripts) (8–13). A longer-term goal is to adapt 
single cell combinatorial indexing to span the Central 
Dogma, such that aspects of DNA, RNA and protein species 
can be concurrently assayed from each of many single cells. 
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Fig. 1. sci-CAR workflow. Key steps outlined in text. RNA-seq: index2 and read1 cover the i5 
index, UMI and RT barcode; index1 and read2 cover the i7 index and cDNA fragment. ATAC-
seq: read1 and read2 cover genomic DNA sequence. Index 1 and index 2 cover the Tn5 and 
PCR barcodes. 
 

on S
eptem

ber 2, 2018
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://www.sciencemag.org/
http://science.sciencemag.org/


First release: 30 August 2018  www.sciencemag.org  (Page numbers not final at time of first release) 8 
 

 
  

Fig. 2. Joint profiling of chromatin accessibility and transcription in dexamethasone 
treated A549 cells. (A) Scatter plot showing the proportion of human reads, out of all reads 
mapping uniquely to the human or mouse reference genomes, for cells in which both RNA-
seq profiles and ATAC-seq profiles were obtained. Only HEK293T (human) and NIH/3T3 
(mouse) cells are plotted. (B) t-SNE visualization of A549 cells (RNA-seq) including cells 
from both sci-CAR and sci-RNA-seq-only plates, colored by DEX treatment time (left) or 
unsupervised clustering id (right). (C) t-SNE visualization of A549 cells (ATAC-seq) including 
cells from both sci-CAR and sci-ATAC-seq-only plates, colored by DEX treatment time (left) 
or unsupervised clustering id (right). (D) t-SNE visualization of A549 cells (ATAC-seq) with 
linked RNA-seq profiles. If the cell is in cluster 1 (or cluster 2) in both RNA-seq and ATAC-
seq, then it is labeled as “Match”, otherwise it is labeled “Discordant”. (E) Distribution of cells 
from different DEX treatment timepoints in gene expression pseudotime inferred by 
trajectory analysis. (F) Smoothed line plot showing scaled (with the R function scale) gene 
expression and promoter accessibility of CKB and ZSWIM6 across pseudotime. Unscaled, 
unsmoothed data shown in fig. S5, F and G. (G) Smoothed line plot showing the scaled mRNA 
level and activity change of transcription factors NR3C1 and KLF9 across pseudotime. 
Unscaled, unsmoothed data shown in fig. S6, D and E. 
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Fig. 3. sci-CAR enables joint profiling of chromatin accessibility and transcription in 
mouse kidney. (A) t-SNE visualization of mouse kidney nuclei (RNA-seq). Cell types are 
assigned based on established marker genes. (B) Heatmap showing the relative expression 
of genes from the solute carrier group of membrane transport proteins in consensus 
transcriptomes of each cell type estimated by RNA-seq data from the co-assay. The raw 
expression data (UMI count matrix) was log-transformed, column centered and scaled 
(using the R function scale), and the resulting values clamped to [-2, 2]. (C) t-SNE 
visualization of mouse kidney nuclei (ATAC-seq) after aggregating cells with highly similar 
transcriptomes (‘pseudocells’), colored by cell types identified from RNA-seq. (D) Heatmap 
showing the relative chromatin accessibility of cell type-specific sites for each cell type 
estimated by ATAC-seq data from the co-assay. The raw aggregated ATAC-seq data (read 
count matrix) was normalized first by the total number of reads for each cell type then by the 
maximum accessibility score across all cell types. 
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Fig. 4. Linking cis-regulatory elements to regulated genes based on covariance in single 
cell co-assay data. (A) Top: genome browser plot showing links between accessible distal 
regulatory sites and the gene Slc6a18. The height corresponds to the correlation coefficient. 
Bottom: barplots showing the average expression, promoter accessibility and linked site 
accessibility for cell type-specific marker gene Slc6a18 across different cell types. Gene 
expression values for each cell were calculated by dividing the raw UMI count by cell-specific 
size factors. Site accessibilities for each cell were calculated by dividing the raw read count 
by cell-specific size factors. Error bars represent standard errors of the means. (B) Two 
linear regression models were built to predict gene expression differences between cell 
types. The first model predicts changes on the basis of promoter accessibility alone. The 
second model predicts changes based on the chromatin accessibility of the promoter and 
distal sites that are linked to it. The boxplot shows the cross-validated r-squared calculated 
for each gene from the two models. 
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