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Dimensionality reduction is often used to visualize complex expression profiling 

data. Here, we use the Uniform Manifold Approximation and Projection (UMAP) 

method on published transcript profiles of 1484 single gene deletions of 

Saccharomyces cerevisiae. Proximity in low-dimensional UMAP space identifies 

clusters of genes that correspond to protein complexes and pathways, and finds 

novel protein interactions even within well-characterized complexes. This 

approach is more sensitive than previous methods and should be broadly useful 

as additional transcriptome datasets become available for other organisms. 

 

A central goal of biological studies is the identification and characterization of proteins 

that act in a common cellular pathway. Efforts towards this goal have been greatly aided 

by large-scale perturbation analyses coupled with whole-transcriptome profiling, in 

which each gene’s transcriptional response to a perturbation is measured. If a sufficient 

database of expression profiles exists, then a pathway affected by an uncharacterized 
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perturbation – such as a gene mutation, drug treatment or growth condition – can be 

described by matching the resultant profile to a known profile.1 For the yeast 

Saccharomyces cerevisiae, the expression profiles of a large number of individual yeast 

deletion mutants have been established and used to infer protein complexes and 

networks.2–4 Maximizing the utility of expression profiling approaches for inference of 

physical and genetic interactions requires ever larger such datasets. However, standard 

techniques, such as pairwise correlation, do not fully capture the variation available to 

link gene function as more dimensions are added from larger scale experiments. 

Therefore, techniques that reduce dimensionality of the data while maintaining 

relationships between genes are imperative for the inference of physical and genetic 

interactions in very large gene expression datasets. 

 

Dimensionality reduction methods capture variability in a limited number of random 

variables to facilitate 2- or 3D-visualization of datasets with tens to thousands of 

dimensions. This approach is recognizable in the commonly used method of principal 

component analysis (PCA), which uses linear combinations of variables to generate 

orthogonal axes that efficiently capture the variation present in the data with fewer 

variables. Another approach, t-Distributed Stochastic Neighbor Embedding (t-SNE), 

carries out dimensionality reduction by analyzing similarity of points using a Gaussian 

distance in high dimensional space and projecting these data into a low dimensional 

space.5 A more recent method, uniform manifold approximation (UMAP), estimates a 

topology of the high dimensional data and uses this information to construct a low-
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dimensional representation that preserves relationships present in the data.6 UMAP has 

been particularly useful to precisely define cell types in mixed populations based on 

data from single-cell RNA-seq experiments7–13; it also performs well on other gold-

standard datasets.6,14 Because UMAP is better able to preserve elements of the data 

structure from high dimensional space than similar outputs from t-SNE, it captures local 

relationships within distinct clusters in addition to global relationships between 

clusters.14 This feature is especially useful in the inference of gene relationships, which 

can be due to physical interaction, overlapping gene function, or coordinated 

contributions to a larger cellular process. Here, we show that the use of dimensionality 

reduction by UMAP on bulk expression profiling data of 1484 single gene mutants of S. 

cerevisiae links gene function in clusters at increasingly finer scales, corresponding to 

broad cellular activities, pathways, protein complexes and individual protein-protein 

interactions.  

 

We assigned groups, or “clusters,” to deletion mutants with similar transcriptional 

responses using the Louvain community detection algorithm in low-dimensional UMAP 

space.9 While many single-cell transcriptomic studies use expression values from genes 

with the highest dispersion across individual cells, we took advantage of the 

completeness of bulk microarray data generated by Kemmeren et al.3 and used 

expression values for all 6170 genes to make a UMAP projection for subsequent 

clustering. This approach resolved 50 main clusters, with the number of deletion 

backgrounds assigned to each cluster ranging from 4 to 298 (median of 11). Clusters 
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with >25 genes were subsequently re-clustered using similar parameters to define sub-

clusters. The final dataset contains 171 clusters with a median of 8 genes per cluster.  

 

A total of 194 characterized yeast complexes have at least two of their corresponding 

genes in the dataset of single deletions. For 40% of these complexes (78/194), we 

could assign two or more genes to the same cluster (examples of complexes in the 

initial set of 50 clusters in Figure 1A, additional complexes were separated in the re-

clustered set (Figure 1B)). For example, the re-clustering of the original cluster 2, which 

is characterized by cell cycle and chromosome organization genes, resulted in more 

distinctly separating the Isw2-Itc1 chromatin remodeling complex, the Csm3-Tof1 S-

phase checkpoint complex and the Oca S-phase histone activation complex (Figure 

1B). Within this re-clustered set, multiple complexes could be found among genes within 

a single cluster, suggesting that these complexes may cooperatively contribute to 

chromosome cohesion and recombination (Figure 1B). 

 

In some cases, members of individual complexes were assigned to separate clusters, 

suggesting sub-functionalization of components. For example, the 13-member mediator 

complex was found in three clusters (numbers 16, 34 and 41) containing 3, 6, and 4 

members of mediator, respectively (Figure 1A). Cluster 16 (with 3 members) also 

contains members of SAGA and SWI/SNF complexes, and loss of mediator subunits in 

this cluster alters the transcription of amino acid metabolism genes and glucose 

transmembrane transporters (Supplemental Table 1); cluster 34 (with 6 members) 

.CC-BY-NC 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/681726doi: bioRxiv preprint first posted online Jun. 25, 2019; 

http://dx.doi.org/10.1101/681726
http://creativecommons.org/licenses/by-nc/4.0/


 5 

contains galactose-responsive subunits of mediator; and cluster 41 (with 4 members) 

contains transcriptional-initiation-related mediator subunits. Here, UMAP preserves 

global relationships between clusters in addition to resolving proximal cluster members. 

For example, most chromatin remodeling complexes grouped in UMAP space, despite 

being present in separate clusters and containing unique local topologies (Figure 1A). 

 

UMAP clustering identified the components of the pathway for tRNA wobble uridine 

modification and revealed two additional members that are likely to link metabolism and 

cell cycle to this process. One of these, Met18, has a human ortholog (MMS19) that 

functions in maturation of Fe-S cluster-containing proteins; the conserved yeast and 

human Elongator component Elp3 is one of these Fe-S proteins.15 The other new 

member, the PP2A phosphatase Sit4, is implicated in dephosphorylation of Elongator; 

its absence leads to tRNA modification defects.16   

 

To assess whether UMAP distance captured known interactions as well as pairwise 

correlation, we used a dataset of 1060 protein interactions determined from co-

immunoprecipitation followed by mass spectrometry.2 The UMAP clustering data 

captured these complexes more sensitively and with more precision than previous 

pairwise correlation-based metrics (AUC pairwise correlation = 0.73, AUC UMAP = 

0.84, Figure 2A). UMAP distance also captured known interacting pairs better than 

distance in high-dimensional space (AUC = 0.56) and distance in PCA space (AUC = 
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0.70), suggesting that the UMAP dimensionality reduction itself adds value in the 

identification of interactions (Figure 2A, Supplemental Figure 1A). 

 

Performing clustering in UMAP space ought to produce clusters containing more true 

interactions than distance in other spaces. To test whether similar results were obtained 

without UMAP dimensionality reduction, we clustered the data in PCA space. Clustering 

in PCA space identified 8/50 clusters with perfect overlap to UMAP clusters, and 34/50 

overlapping by at least 50% (Supplemental Figure 1B).  

 

To compare pairwise correlation with the UMAP approach, we calculated for each 

known interacting pair (1) the Pearson correlation of their deletion transcriptomes; and 

(2) the distance of those two genes in the UMAP space generated from using all 

deletion transcriptomes. Among these interacting pairs, UMAP distance and pairwise 

correlation are negatively correlated (Figure 2B). However, the increased sensitivity of 

UMAP distance to detect known interactions suggests that the discrepancies between 

UMAP distance and pairwise correlation might represent interactions that were 

previously overlooked. Based on a UMAP distance cutoff corresponding to a 5% FDR of 

known complex members (Inset - Figure 2B), we were able to identify 176 putative 

interactions that would not have been confidently called by previous approaches using 

pairwise correlations (PCC < 0.5); these interactions contain 86 unique genes, of which 

77 show co-IP or yeast two-hybrid evidence for membership among 31 protein 

complexes, while the remaining 9 genes had no such evidence.  
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Since proximity in UMAP space tends to capture known interactions and shared 

function, distance in UMAP space could serve as a useful tool to investigate 

evolutionary questions about gene divergence. We calculated UMAP distance between 

151 paralogous gene pairs in yeast and used this distance to characterize the functional 

divergence between each pair (Supplemental Figure 2A). Proximity of paralog pairs in 

UMAP space did not correspond to previous estimations of paralog divergence 

(Supplemental Figure 2B-C) based on synthetic genetic interaction (R=0.018) or Gene 

Ontology relationships (R =0.035).17 When paralogs show a negative genetic interaction 

– that is, deletion of both genes leads to lower fitness than expected – it is assumed that 

the two genes retain redundant functions. However, in 11 paralog pairs whose negative 

genetic interactions suggested redundant function, we showed distinct downstream 

effects on gene expression when each gene was deleted (Supplemental Figure 2B, 2D); 

these genes may have distinct effects on fitness in different environments.18 In these 

cases, a gene may retain the capacity to complement the essential function of its 

paralogous partner, while diverging sufficiently in function as revealed by the UMAP-

based transcriptome analysis. 

 

Despite successful clustering of many protein complexes and pathways of yeast, the 

UMAP approached nevertheless identified several clusters that did not obviously 

correspond to a complex or pathway. We used GO enrichment of differentially 

expressed genes in these clusters to interrogate their function: cluster 26 showed 
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enriched terms for cell cycle, non-membrane-bound organelles, and prions; cluster 13 

showed enrichment for mitochondrial function; cluster 46 showed enrichment for TOR 

signaling and aerobic respiration; cluster 32 showed enrichment for protein folding; and 

cluster 11 showed enrichment for heme binding. Differential expression analysis 

produced significant gene sets for all main and sub-clusters (Supplemental Table 1). 

 

Because of its greater sensitivity than other approaches, as well as its ability to capture 

both local and global relationships, UMAP-based association of gene function adds 

value in the identification of protein complexes, pathways, and novel interactions in 

transcriptomic datasets. However, the utility of this method is dependent on the 

availability of high-quality profiling data from large-scale environmental or genetic 

perturbation experiments. As more datasets of this type become available, we expect 

that this approach, or similar dimensionality reduction techniques, will becoming 

increasingly useful in mapping protein complexes and pathways both within and across 

other species. The recent appearance of single-cell expression profiling data paired with 

CRISPR-induced mutations will be an especially useful source of data of this type, as 

these experiments include increasingly larger numbers of mutations.19 While many of 

the most useful applications of dimensionality reduction tend to arise from single-cell 

genomics, for which typical datasets necessitate approaches like UMAP to define 

relationships between cells, these approaches may also prove useful in visualizing the 

spatial relationships of biomolecules in tissues,20 genetic interactions, or relationships 

between human populations.21 
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Methods 
 
Yeast single gene deletion transcriptome data. Growth-rate adjusted microarray 
expression values derived from limma modeling by Kemmeren et al.2 were used as 
input data. All 1484 single-gene deletion strains from this dataset were used for 
subsequent dimensionality reduction. 
 
UMAP dimensionality reduction and clustering. We used Monocle3 (v2.99.3) to 
perform Uniform Manifold Approximation and Projection (UMAP)6 to project single-
gene deletion strains into two dimensions and performed Louvain clustering22 using 
default parameters (except, reduceDimension: reduction_method=UMAP, 
metric=cosine, n_neighbors=10, min_dist = 0.05; clusterCells: method=louvain, 
res=1e-4, k=3). Expression values from all 6170 yeast genes were given as input to 
Principal Component Analysis (PCA). The top 100 principal components were then 
used as input to UMAP for generating 2D projections of the data. For subclustering, 
main clusters 1 – 10 were each individually processed using top 25 principal 
components in the subset data as input to UMAP dimensionality reduction and Louvain 
clustering. 
 
Differentially expressed genes per cluster. Gene expression values for single-gene 
deletions within a cluster were compared to the background set of all deletions. 
Differentially expressed genes for each cluster were calculated using the 
differentialGeneTest() function in Monocle. Because the expression datasets were 
microarray-derived rather than count-based RNA-seq data, the `gaussianff` expression 
family was used; significance values were corrected for genomic inflation factors using 
lamba gc (test.stat = qchisq(1.0 - p.val, df = 1)` `lambda.gc = median(dea_df$test.stat) / 
qchisq(0.5, 1).23 
 
Benchmarking with known interacting pairs. To test the ability of UMAP distance, 
and other distance metrics, to capture known interactions, we used a curated 
consensus set of protein complexes derived from two large, high-throughput mass 
spectrometry datasets and GO interactions.2 The consensus set was transformed into 
a pairwise Boolean interaction matrix based on whether or not each pair had been 
observed together in the known complex set. Using the subset of pairs that were found 
in the set of 1484 single gene deletion transcriptome datasets, for each gene pair, we 
calculated Euclidean distance in UMAP space, and used cumulative distance cutoffs to 
quantify the number of true and false interacting pairs and generate a receiver 
operating characteristic (ROC) curve. 
 
 
Code availability. All input data and scripts used for dimensionality reduction and 
clustering are available through github (https://github.com/cole-trapnell-
lab/yeast_umap). 

.CC-BY-NC 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/681726doi: bioRxiv preprint first posted online Jun. 25, 2019; 

http://dx.doi.org/10.1101/681726
http://creativecommons.org/licenses/by-nc/4.0/


 10 

 
 
 
Acknowledgements: We thank J. Packer for advice on differential expression analysis. 
 
 

References 

1. Hughes, T. R. et al. Functional discovery via a compendium of expression 
profiles. Cell (2000). doi:10.1016/S0092-8674(00)00015-5 

2. Benschop, J. J. et al. A Consensus of Core Protein Complex Compositions for 
Saccharomyces cerevisiae. Mol. Cell 38, 916–928 (2010). 

3. Kemmeren, P. et al. Large-scale genetic perturbations reveal regulatory networks 
and an abundance of gene-specific repressors. Cell 157, 740–752 (2014). 

4. Wang, W., Cherry, J. M., Botstein, D. & Li, H. A systematic approach to 
reconstructing transcription networks in Saccharomyces cerevisiae. Proc. Natl. 
Acad. Sci. 99, 16893–16898 (2002). 

5. Laurens van der Maaten & Hinton, G. Visualizing Data using t-SNE Laurens. J. 
Mach. Learn. Res. 9, 2579–2605 (2008). 

6. Mcinnes, L., Healy, J. & Melville, J. UMAP : Uniform Manifold Approximation and 
Projection for Dimension Reduction arXiv : 1802 . 03426v2 [ stat . ML ] 6 Dec 
2018. (2018). 

7. Wang, X. et al. Three-dimensional intact-tissue sequencing of single-cell 
transcriptional states. Science (80-. ). 361, (2018). 

8. Shifrut, E. et al. Genome-wide CRISPR Screens in Primary Human T Cells 
Reveal Key Regulators of Immune Function Resource Genome-wide CRISPR 
Screens in Primary Human T Cells Reveal Key Regulators of Immune Function. 
Cell 175, 1958-1971.e15 (2018). 

9. Cao, J. et al. The single-cell transcriptional landscape of mammalian 
organogenesis. Nature 566, 496–502 (2019). 

10. Jean-Baptiste, K. et al. Dynamics of gene expression in single root cells of A. 
thaliana. Plant Cell 31, tpc.00785.2018 (2019). 

11. Saunders, L. M. et al. Thyroid hormone regulates distinct paths to maturation in 
pigment cell lineages. Elife 8, (2019). 

12. Guo, L. et al. Resolving Cell Fate Decisions during Somatic Cell Reprogramming 
by Single-Cell RNA-Seq. Mol. Cell 73, 815-829.e7 (2019). 

13. Pijuan-Sala, B. et al. A single-cell molecular map of mouse gastrulation and early 
organogenesis. Nature 566, 490–495 (2019). 

14. Becht, E. et al. Dimensionality reduction for visualizing single-cell data using 
UMAP. Nat. Biotechnol. 37, 38–47 (2019). 

15. Paraskevopoulou, C., Fairhurst, S. A., Lowe, D. J., Brick, P. & Onesti, S. The 
Elongator subunit Elp3 contains a Fe4S4 cluster and binds S-
adenosylmethionine. Mol. Microbiol. 59, 795–806 (2006). 

.CC-BY-NC 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/681726doi: bioRxiv preprint first posted online Jun. 25, 2019; 

http://dx.doi.org/10.1101/681726
http://creativecommons.org/licenses/by-nc/4.0/


 11 

16. Scheidt, V., Juedes, A., Baer, C., Klassen, R. & Schaffrath, R. Loss of wobble 
uridine modification in tRNA anticodons interferes with TOR pathway signaling. 
Microb. Cell 1, 416–424 (2014). 

17. Costanzo, M. et al. A global genetic interaction network maps a wiring diagram of 
cellular function. Science (80-. ). 353, (2016). 

18. Bradley, P. H., Gibney, P. A., Botstein, D., Troyanskaya, O. G. & Rabinowitz, J. D. 
Minor Isozymes Tailor Yeast Metabolism to Carbon Availability. mSystems 4, 1–
19 (2019). 

19. Datlinger, P. et al. Pooled CRISPR screening with single-cell transcriptome 
readout. Nat. Methods 14, 297–301 (2017). 

20. Smets, T. et al. Evaluation of Distance Metrics and Spatial Autocorrelation in 
Uniform Manifold Approximation and Projection Applied to Mass Spectrometry 
Imaging Data. Anal. Chem. 91, 5706–5714 (2019). 

21. Diaz-Papkovich, A., Anderson-Trocme, L. & Gravel, S. Revealing multi-scale 
population structure in large cohorts. bioRxiv 423632 (2019). doi:10.1101/423632 

22. Vincent D. Blondel, Jean-Loup Guillaume, Renaud Lambiotte,  and E. L. Fast 
unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008 
(2008). doi:10.1088/1742-5468/2008/10/P10008 

23. Yang, J. et al. Genomic inflation factors under polygenic inheritance. Eur. J. Hum. 
Genet. 19, 807–812 (2011). 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY-NC 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/681726doi: bioRxiv preprint first posted online Jun. 25, 2019; 

http://dx.doi.org/10.1101/681726
http://creativecommons.org/licenses/by-nc/4.0/


UMAP1

U
M

AP
2

1

3

2

4

Oca2
Oca4
Oca5
Oca6
Oca3

Dls1
Dpb4
Isw2
Itc1

Chl1
Csm1
Ctf19
Ctf18
Ctf8
Dcc1
Esc2
Est1
Est3
Rad18
Rad50
Rad55
Rad57
Rtt109
Rmi1
Sgs1
Top3

RecQ helicase-Topo III

Ctf18 RFC-like

Isw2-Itc1 
chromatin accessibility 

 Rhp55-Rhp57

telomerase holoenzyme

cell cycle/chromosome organization

replication fork

Dpb3
Elg1
Hst3
Pph3
Mrc1
Rrm3
Pol32
Csm3
Tof1 Csm3-Tof1 

Elg1 RFC-like 

putative Gsy1-Gsy2 complexGsy1
Gsy2
Erf2
Gpg1
Psy2
Snf4

tRNA wobble uridine modification
(including Elongator)

cluster 19

Nfs1
Tum1

sulfur
mobilization

Uba4

Urm1

Ncs6
Ncs2

Elp4
Elp5
Elp6

Elp1

Elp2
Elp3

Met18

Urm1 activation
sulfur transfer

Kti12

M
et18

U
rm

1
Kti12
Elp4
U

ba4
Elp2
Tum

1
Elp6
Elp1
Sit4
Elp5
N

cs6
N

cs2
Elp3

Met18
Urm1
Kti12
Elp4
Uba4
Elp2
Tum1
Elp6
Elp1
Sit4
Elp5
Ncs6
Ncs2
Elp3

Sit4

distance 
in UMAP

closer

cell cycle
methionine

biosynthesis

known member 
new member
deletion not analyzed

Oca 

A

B C

(3/6/8)
(found/potential/all)

UMAP1

U
M

AP
2

Ste11-Ste50 (2/2)
telomere cap (3/6)

Sir2-3-4 (3/3)

ribonuclease H2 (2/2)
Rpd3L (10/10)

ESCRT I (2/3)
ESCRT II (3/3)

unknown, 46 (TOR)
Ric1-Rgp1 (2/2)
Pep3-Pep5 (2/2)
HOPS (2/6)
unknown, 32 (lipids, heatshock)

6-phosphofructokinase (2/2)

HDA (3/3)
Cyc8-Tup1 (2/2)

ISW1 (2/4)
CAF-1 (3/3)
HAT-A4 (2/8)
HIR (2/4)

SAGA (6/12)
Sum1-Rfm1 (2/2)

Srb-mediator (4/13)
Srb-mediator (3/13)
RNA polymerase II (2/3)
RSC (5/15)
SAGA (6/12)

Set3C (5/7)
Cdc73-Paf1 (3/5)
COMPASS (6/7)
Bre1-Lge1 (2/2)

Ubp3-Bre5 (2/2)
snRNP U6 (5/5)
Tma20-Tma22 (2/2)

exosome, RNase (2/4)
putative complex (2/2)

preribosome, large subunit (2/3)

RNA Pol I (2/4)

preribosome, small subunit  (2/2)
Efg1-Bud22 (2/2)

Ino80 (6/7)
RSC (5/15)

Swr1 (7/8)
NuA4 (4/6)

Sac3-Thp1 (2/2)
protein kinase CK2 (3/4)

TREX (2/4)

Srb-mediator (6/13)
TF complex (4/4)

Bit61
Bsp1
Kip2
Lap3
Mcm16
Mcm22
Pbp2
Pgm2
Prm5
Pyc1
Rad17
Rad34
Rad9
Rs1
YJL049W

COMA 

Apc9
Swm1

Duf1
Ert1

Nrm1
Pde1
Ppg1
Puf2

Rad7
Tax4

anaphase-promoting
 complex

Elongator (6/6)

unknown, 13 (mitochondria)

unknown, 26 (cell cycle)

Figure 1. UMAP groups single gene deletion transcriptomes according to shared function.
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Figure 1. UMAP clusters single gene deletion transcriptomes according to shared 

function. (A) UMAP coordinates of 1484 single gene deletion strains clustered by 

similarity in transcriptional effects. The initial 50 individual clusters are each shown in a 

different color. Strains that comprise protein complexes are indicated alongside a bar 

colored according to cluster identity. Each complex is represented as a fraction: the 

number of complex members found in the cluster over the number of complex 

members in the set of 1484 mutants. Clusters with coordinates far from the main group 

are shown in boxes. Clusters without a known complex are marked as “unknown,” 

along with an arbitrary cluster number; these clusters are annotated with a broad GO 

term enriched in that cluster. (B) Cluster 2 shows more distinct groupings when re-

clustered separately. Annotations as in (A). Cluster 2 as a whole was enriched for cell 

cycle and chromosome organization, with individual clusters corresponding to parts of 

this process. (C) The tRNA wobble uridine pathway, captured entirely within the cluster 

containing the Elongator complex (boxed green cluster in (A)). Complex members 

within this cluster are annotated with orange boxes, while new members are annotated 

in blue. One pathway member, Nfs1, was not present in the single gene deletion 

dataset. The heatmap represents fine-scale distances between each pair of points 
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within the cluster. Darker shades of red indicate points nearer in UMAP space; 

hierarchical clustering was applied on this distance metric to group proteins within this 

pathway. Heterodimeric interactions, such as Ncs6-Ncs2 (bottom-right corner of 

heatmap), are nearer to each other than other members of the pathway. Novel 

members of this pathway (blue text) are grouped with other members based on their 

similarity of UMAP distance, and these new interactions are indicated with gray lines in 

the pathway diagram.  

 

Figure 2. UMAP distance identifies protein-protein interactions more effectively 

than previous methods. (A) A receiver-operator curve showing the ability of UMAP 

distance to capture known protein-protein interactions (sensitivity) as a function of its 

false positive detection. UMAP distance (blue) performs better than pairwise correlation 

(green), PCA distance (dark grey), and high-dimensional distance (light grey) in 

identifying interactions. (B) For each protein-protein interaction, the distance between 

points in UMAP space was plotted against the pairwise correlation of that pair of 

transcriptomes. The density of points is indicated with blue lines. Inset in the upper 

right shows a zoomed-in portion of the x-axis; points with UMAP distance in this range 

are highly enriched for true interactions that are not captured by pairwise correlation.  
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Supplemental Figure 1. UMAP adds value in identification of true interactions compared to 
other methods. (A) Values for area under the curves (AUC) for ROC analysis in Figure 2A. UMAP  
substantially outperforms other metrics in the identification of true protein-protein interactions. 
(B) Clustering to the same total number of clusters in PCA space returns few clusters strongly 
overlapping the clusters in UMAP space.
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Supplemental Figure 2. Convergent and divergent function of paralogous gene pairs 
defined by UMAP distance. (A) Barplot showing log distance in UMAP space between 151 pairs 
of paralagous gene deletions. (B) Each paralog pair’s UMAP distance plotted against the 
experimentally-determined synthetic genetic interaction score (briefly, a more negative score on 
the SGA axis indicates that the double mutant showed a larger cellular fitness defect than the 
combined additive effect of each single mutants). Two paralog pairs are indicated, and their 
distance in UMAP space is displayed in (D) and (E). (C) Each paralog pair’s UMAP distance 
plotted against a metric for paralog divergence calculated using similarlity of GO term annotation. 
While a low score in the GO divergence metric suggests that paralog pairs have less diverged 
functions, many of these pairs are far from each other in UMAP space, suggesting that these 
paralogs show more divergent function than predicted by the GO metric. (D) Full 1484 gene 
deletion UMAP as in Figure 1A, with a divergent paralog pair (SSF1 and SSF2) highlighted. Genes 
contained in the same cluster as each paralog are listed; the SSF1 cluster (7-4) contains many 
genes required for ribosome biogenesis, while the SSF2 cluster (14) contains genes involved in 
DNA damage. (E) Full UMAP with a convergent paralog pair (ARK1 and PRK1) highlighted.  
Genes contained in the same cluster as each paralog are listed.
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