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Abstract
Single-cell RNA-sequencing methods are now robust and economically
practical and are becoming a powerful tool for high-throughput, high-resolution
transcriptomic analysis of cell states and dynamics. Single-cell approaches
circumvent the averaging artifacts associated with traditional bulk population
data, yielding new insights into the cellular diversity underlying superficially
homogeneous populations. Thus far, single-cell RNA-sequencing has already
shown great effectiveness in unraveling complex cell populations,
reconstructing developmental trajectories, and modeling transcriptional
dynamics. Ongoing technical improvements to single-cell RNA-sequencing
throughput and sensitivity, the development of more sophisticated analytical
frameworks for single-cell data, and an increasing array of complementary
single-cell assays all promise to expand the usefulness and potential
applications of single-cell transcriptomic profiling.
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Introduction
The advent of next-generation sequencing over a decade ago 
spurred the development of a host of sequencing-based technologies1  
for probing genomic variation and dynamics. Of these methods, 
RNA-sequencing (RNA-seq) enabled transcriptomic profiling at 
unprecedented sensitivity and breadth, leading to the discovery of 
new RNA species and deepening our understanding of transcriptome 
dynamics2,3. In recent years, low-input RNA-seq methods have been 
adapted to work in single cells4. These single-cell RNA-seq (scRNA-
seq) technologies can quantify intra-population heterogeneity and 
enable study of cell states and transitions at very high resolution, 
potentially revealing cell subtypes or gene expression dynamics that 
are masked in bulk, population-averaged measurements5,6. In this 
review, we will discuss recent advancements and current limitations 
of scRNA-seq methodologies and highlight major applications of 
scRNA-seq in biological research.

scRNA-seq technologies: overview and recent 
advancements
Over the past six years, numerous scRNA-seq protocols have been 
developed4,7–21. Currently published scRNA-seq protocols all follow 
the same general workflow: single cells are isolated; cells are lysed, 
and the RNA is captured for reverse transcription into cDNA; and 
the cDNA is pre-amplified and then used to prepare libraries for 
sequencing and downstream analysis. Kolodziejczyk et al.22 pro-
vide a comprehensive review of individual scRNA-seq protocols 
and their relative strengths and weaknesses.

Although cDNA pre-amplification is necessary because only 
minute amounts of RNA are captured from each cell23, amplifica-
tion bias arising during pre-amplification limits the quantitative 
accuracy of scRNA-seq. Unique molecular identifiers (UMIs) can 
be used to barcode individual RNA molecules during the reverse 
transcription step, allowing direct transcript counting24–29, and many 
of the newer scRNA-seq protocols use UMIs to improve transcript 
quantitation9,16–19. Alternatively, exogenous RNA standards such as 
those from the External RNA Control Consortium (ERCC) can be 
“spiked in” with cellular RNA to map between relative and absolute 
transcript counts20,30. Stegle et al.31 provide a more detailed discus-
sion of methods for scRNA-seq transcript quantitation and high-
light some of the analytical challenges unique to single-cell data.

scRNA-seq methods have also been improving in terms of through-
put and scalability. Whereas most earlier methods have been lim-
ited to measuring hundreds or thousands of cells at a time, recent 
advancements in microwell17 and droplet-based18,19 cell-barcoding 
strategies have enabled the analysis of tens of thousands of cells 
in a single experiment. The high-throughput capacity of these new 
technologies will increase the resolution of single-cell experiments, 
improving their ability to detect rare cell subtypes or transitional 
states.

Challenges and limitations of scRNA-seq
Current scRNA-seq technologies still face a number of challenges. 
Collectively, existing scRNA-seq methods have low capture effi-
ciency. Because only a small fraction of each cell’s transcript com-
plement (approximately 10% for many protocols9) is represented 
in the final sequencing libraries, scRNA-seq has limited sensitivity 

and is unable to reliably detect low-abundance transcripts9,32,33. The 
low amount of input material for scRNA-seq libraries also leads to 
high levels of technical noise, which complicates data analysis and 
can mask underlying biological variation22,34–37. Methods for mode-
ling technical variation in scRNA-seq data have been proposed35–37; 
however, most approaches use the sample-to-sample variation in 
ERCC read counts to model and control for technical noise in the 
single-cell data and thus can be used only with experiments incor-
porating spike-in controls. Moreover, these approaches assume that 
the spike-in transcripts are treated the same as cellular RNA during 
library prep. However, naked spike-in RNA does not pass through 
cellular lysis and is not in complex with ribosomes or RNA-binding 
proteins. Thus, although spike-in procedures serve as useful indica-
tors of transcript frequency and sensitivity in an experiment, there 
are many sources of variability that remain difficult to control in 
scRNA-seq.

Another potential source of bias stems from procedures to isolate 
and capture individual cells. Although micromanipulation or laser 
dissection techniques can isolate single cells from known loca-
tions within a cell population or tissue, these methods are labor-
intensive or require specialized equipment22,33,38. Most scRNA-seq 
protocols—and all of the existing high-throughput methods—first 
dissociate tissues to form a single-cell suspension before capturing 
individual cells. This cell dissociation step is often non-trivial, and 
enzymatic treatments used to break down tissues may impact cell 
viability, potentially affecting cells’ transcriptional profiles22. To 
avoid biases stemming from such enzymatic treatments, Grindberg 
et al. have developed techniques for performing RNA-seq directly 
on single nuclei39,40, which can be isolated without using harsh 
protease treatments.

For most single-cell isolation procedures, information about cells’ 
original spatial context and cellular environment is lost. Recently, 
computational methods have been developed to infer a cell’s origi-
nal position in three-dimensional space from its transcriptional pro-
file by using a reference gene expression map built from existing 
in situ data41,42. However, these methods rely on the existence of 
spatial expression data for a panel of reference genes in the tissue 
of interest. Alternatively, emerging in situ sequencing strategies are 
able to capture and amplify RNA within the original tissue context, 
although current methods can measure up to only a few dozen genes 
per cell43–45. These methods sequence RNA directly inside unlysed 
cells: cDNA amplicons are generated and circularized, amplified via 
rolling circle amplification, and then sequenced by ligation in situ by 
using the SOLiD platform44,45. Such in situ sequencing approaches 
are distinct from fluorescence in situ hybridization (FISH) strate-
gies (discussed further below), which detect transcripts through the 
binding of fluorescently labeled probes. However, although in situ 
sequencing methods preserve spatial information and can measure 
RNA expression patterns at subcellular resolution, these approaches 
are currently limited in throughput and require specialized tools 
which may not be widely accessible.

Finally, the bulk of scRNA-seq literature has focused solely on polya-
denylated mRNAs; almost all published scRNA-seq protocols isolate 
cellular RNA by using poly-T priming, which captures only polya-
denylated transcripts. Consequently, current methods are ill suited 
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to investigate non-polyadenylated transcript classes, such as regula-
tory non-coding RNA (e.g. microRNAs46,47, lncRNAs48, or circular 
RNAs49,50) or bacterial RNA21. Random hexamer priming has been 
suggested as a strategy to simultaneously capture both polyade-
nylated and non-polyadenylated transcripts in single cells20,21, and 
computationally selected “not-so-random” primers could potentially 
be used to capture poly(A)+ and poly(A)– species while deplet-
ing for ribosomal RNA51. Incorporating these alternative priming 
strategies into existing scRNA-seq technologies would enable the 
exploration of a wider spectrum of transcript types, broadening the 
scope and applicability of scRNA-seq.

Complementary single-cell technologies
Although scRNA-seq alone is a powerful tool for dissecting cell 
populations and processes, combining scRNA-seq with other single- 
cell technologies supplements transcriptomic data with comple-
mentary information that helps to paint a more complete picture of 
each cell. RNA FISH, in which individual transcripts are labeled 
with fluorescent probes and then detected via high-resolution 
microscopy, provides an orthogonal method of quantifying tran-
script levels and is often used to independently validate results from 
scRNA-seq data52. Unlike scRNA-seq, single-cell FISH preserves 
the spatial context of assayed transcripts and can localize molecules 
down to subcellular resolution53,54. RNA localization and traffick-
ing dynamics often play a crucial role in regulating protein transla-
tion and cellular function55; used in conjunction with scRNA-seq, 
single-cell FISH could supplement the global transcriptomic snap-
shots of scRNA-seq with information on the spatial dynamics of 
selected transcripts. Whereas spectral overlap between fluoro-
phores still limits the number of transcripts that can be simultane-
ously assayed, new approaches using super-resolution microscopy 
and combinatorial labeling schemes can measure up to thousands of 
transcripts in each cell53,54,56.

Single-cell genome sequencing has been developing alongside 
scRNA-seq and has been used successfully to map genetic variation 
at single-cell resolution and to infer cell lineages57–61. Moreover, in 
the past year, methods have been developed to sequence both the 
genome and the transcriptome of the same cell62,63, enabling direct 
comparison of genetic and gene expression variation within a sin-
gle cell. This integrated, parallel-sequencing approach shows great 
promise for uncovering genotype-phenotype relationships and has 
already been used to demonstrate strong correlations between gene 
copy number and gene expression levels62,63.

Over the past few years, methods have also been developed to assay 
the epigenetic landscape of single cells: both bisulfite sequencing64–67 
(measuring DNA methylation) and assay for transposase-accessible 
chromatin with high-throughput sequencing (ATAC-seq)68,69 (meas-
uring chromatin accessibility) have been adapted to work with 
single cells. These methods offer insight into the epigenetic het-
erogeneity within cell populations, and paired epigenomic and tran-
scriptomic data could deepen our understanding of the mechanisms 
underlying gene expression regulation. Although direct comparison 
of a cell’s epigenomic and transcriptomic profiles is not currently 
possible, combining single-cell bisulfite sequencing or single-
cell ATAC-seq with scRNA-seq from the same cell could enable 
such analyses in the future. Similarly, integrating scRNA-seq with 

single-cell proteomic methods70,71 would provide insight into post-
transcriptional gene regulation and the degree to which mRNA 
expression is reflected at the protein level.

Applications of scRNA-seq
Recent studies have demonstrated high cell-to-cell transcriptomic 
variation10,72–74, even within genetically homogenous cell populations75. 
Consequently, bulk measurements can mask important cellular 
heterogeneity5,76 and lead to averaging artifacts6. One major advan-
tage of scRNA-seq is its ability to detect such cell-to-cell heteroge-
neity and capitalize upon it to uncover population structure and cell 
dynamics hidden at the group level.

scRNA-seq has been used to dissect heterogeneous cell popula-
tions and complex tissues, such as intestine77, spleen16, lung78, or 
brain42,79–83. Clustering methods16,75,77 or dimensionality reduction 
techniques78 can be used directly on single-cell expression data to 
group cells by transcriptomic similarity and to detect the underlying 
population structure in an unsupervised manner (Figure 1A). Cell 
subgroups identified from such analyses can often be matched to 
known cell types via previously established marker genes16,52,78,81,82; 
however, structural analysis of single-cell data has also led to the 
discovery of novel cell subtypes79,83,84 as well as the identification of 
new marker genes for known cell types78,84,85. In the context of cancer, 
scRNA-seq analyses have been used to characterize intra-tumoral 
heterogeneity and to classify tumor subpopulations86–88. scRNA-seq 
profiling can also detect variation among cell states within a seem-
ingly homogenous population, such as differences in cell cycle stage89 
or differential signaling responses to an outside stimulus52,75,90.

scRNA-seq is also commonly used to study cellular transitions 
between different states and to map cell trajectories through 
processes like differentiation (Figure 1B). Several analytical frame-
works have been proposed for inferring such trajectories: Monocle 
introduced the concept of “pseudotime” as a quantitative measure 
of “progress through a biological process” and uses techniques 
from computational geometry to order cells in pseudotime on the 
basis of their transcriptomic profiles6. Wanderlust uses an entirely 
different algorithm based on local topological clustering to place 
cells along a developmental trajectory91 by using single-cell pro-
teomic measurements. More recently, Shin et al.92 and Moignard 
et al.93 have outlined additional strategies for reconstructing cell 
trajectories. Once cells have been ordered along a trajectory, gene 
expression patterns over the course of the established developmen-
tal trajectory can be analyzed to identify key regulators and genes 
with “switch-like” behavior6,72,91. Sensitivity for identifying inter-
mediate differentiation states can also be improved by using latent 
variable models to account for potential confounding factors (such 
as cell cycle) in the expression data prior to applying trajectory 
analysis techniques94.

Growing evidence suggests that genes are not transcribed continu-
ously but rather undergo short bursts of transcription interspersed 
with silent intervals95. Transitions between “on” and “off” states 
are governed by several stochastic processes96,97, and this phe-
nomenon of “transcriptional bursting” is a major source of gene 
expression heterogeneity between cells. scRNA-seq can be used 
to explore transcriptional mechanics and to model the kinetics of 
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stochastic gene transcription96,98,99 (Figure 1C). Recent studies have 
also reported instances of cells preferentially expressing a single 
allele32 or a single splice isoform75; however, the low mRNA cap-
ture efficiency of scRNA-seq makes it difficult to draw definitive 
conclusions about allele-specific or isoform-specific expression at 
the single-cell level.

The inherent gene expression variability between cells in scRNA-
seq data can be used to infer gene regulatory networks (GRNs)100–102. 
Most commonly, genes are grouped into co-regulated “modules” on 
the basis of expression profile similarity16,52,75,86,87,103 (Figure 1D). 
Network inference from scRNA-seq data poses several challenges. 
Owing to low capture efficiency and stochastic gene expression, 
gene dropout (where gene expression is zero in a given cell) is quite 
common, leading to zero-inflated expression data104. Although 
zero-inflated distributions can be used to accommodate expected 

dropout104–106, such models also have a greater number of parameters 
and can be more difficult to fit than a simpler model, particularly 
when sample size is limited. As previously mentioned, scRNA-
seq data are very noisy, and separating biological variation from 
technical noise remains a non-trivial problem35,36. Additionally, the 
number of model parameters to be estimated (genes and gene inter-
actions) usually greatly exceeds the number of sample observations 
(cells measured), and this disparity poses challenges for param-
eter estimation107,108. Simplifying the model on the basis of prior 
knowledge or focusing on only a small subnetwork of key play-
ers may be necessary to make parameter estimation feasible107–110. 
Finally, experimentally validating inferred GRNs can be very 
difficult; whereas knocking out a single gene is relatively straight-
forward, disrupting interactions between two proteins or between a 
protein and its target sequence can be much harder, and very few 
hypothesized models have been rigorously tested thus far.

Figure 1. Common applications of single-cell RNA sequencing. (a) Deconvolving heterogeneous cell populations. Clustering by 
single-cell transcriptomic profiles can reveal population substructure and enable the identification of cell subtypes and rare cell species 
(e.g. red cells above). Clusters may be tight and well defined (purple, red) or diffuse (blue). (b) Trajectory analysis of cell state transitions. 
Single-cell RNA sequencing time-series data can be used to map cell developmental trajectories over the course of dynamic processes 
such as differentiation or signaling responses to an external stimulus. Some computational suites (e.g. Monocle6) can also accommodate 
branching trajectories, enabling identification of lineage-specific gene expression and key genes that drive branching events. (c) Dissecting 
transcription mechanics. Genes’ expression profiles across many cells can be compared to study transcriptional bursting and to model the 
kinetics of stochastic gene expression. (d) Network inference. Genes can be clustered by expression profile to identify modules of putatively 
co-regulated genes, and gene-gene covariation relationships can be used to infer gene regulatory networks or subnetworks.
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Conclusions
scRNA-seq technologies have advanced significantly since their 
inception, improving in terms of both transcript quantitation and 
experimental throughput. Whereas low capture efficiency and 
high levels of technical noise limit the sensitivity and accuracy of 
scRNA-seq, more sophisticated analytical frameworks are emerg-
ing to facilitate the interpretation of scRNA-seq data35–37. Pair-
ing single-cell transcriptomic data with spatial information41,42,54 
or orthogonal single-cell genomic assays62,63,65,68 also promises 
to provide new insights into transcriptional dynamics and the 
mechanisms underlying gene regulation.

scRNA-seq has been very effective at dissecting complex, hetero-
geneous cell populations, enabling unsupervised learning of popu-
lation structure and the discovery of novel subtypes and rare cell 
species79,84. In the context of dynamic processes, cell trajectories 
reconstructed from single-cell transcriptomic data have provided 

insight into transient intermediate cell states and have helped to 
identify key regulator genes6,91. Finally, scRNA-seq also shows 
great potential for elucidating stochastic transcriptional kinetics 
and inferring gene regulatory networks. However, network infer-
ence from scRNA-seq data is computationally challenging and dif-
ficult to validate; inferred network models should thus be critically 
evaluated and experimentally tested where possible.
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