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Single-cell genomic approaches have the potential to

revolutionize the study of plant systems. Here, we highlight

newly developed techniques to analyze transcriptomes at

single-cell resolution. We focus on the rigorous standards

necessary to generate and compare these data sets

introducing analysis methods that can be applied to interpret

their results. Lastly, we discuss the inherent limitations of

single-cell studies and address future directions for plant

single-cell genomics.

Addresses
1Department of Genome Sciences, University of Washington, Seattle,

WA, USA
2Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
3Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA

Corresponding author: Cuperus, Josh T (cuperusj@uw.edu)

Current Opinion in Plant Biology 2020, 54:114–121

This review comes from a themed issue on Genome studies and

molecular genetics

Edited by Josh T Cuperus and Christine Queitsch

For a complete overview see the Issue and the Editorial

Available online 5th May 2020

https://doi.org/10.1016/j.pbi.2020.04.002

1369-5266/ã 2020 Elsevier Ltd. All rights reserved.

Bulk methods, those that average over many cells, can give

us molecular insight into tissue, and/or timepoint/develop-

mental groups. However, these methods are limited by the

inherent biases introduced by averaging over distinct cell

populations. In some instances, bulk averaging can even

result in qualitatively incorrect conclusions, a phenomenon

termed Simpson’s paradox [1]. Single cell genomic techni-

ques are an incredibly powerful set of tools to uncover

cellular heterogeneity, as well as the development and

differentiation of cell types in complex tissues with high

precision. These methods have primarily been applied to

animal systems, however, recently several groups have

applied high-throughput single-cell transcriptomics to

plants [2��,3,4,5��,6,7�,8��,9��,10��]. The application of sin-

gle-cell RNA-seq to plants brings the promise of compre-

hensively characterizing both common and rare cell types

and cell states, identifying new cell types and bring about a

dynamic understanding of how cell types relate to each

other spatially and developmentally. Thus far, single-cell
Current Opinion in Plant Biology 2020, 54:114–121 
RNA-seq plant studies have focused mostly on the well-

studied and understood Arabidopsis root system

[2��,5��,8��,9��,10��]. Even in this highly tractable and well

understood system, with many known marker genes, and

cell-types these landmark studies revealed a plethora of

unknownandmorerobustcell typemarkergenesandbegun

todefinethetransitionstatesthatgiverisetodevelopmental

trajectories [2��,5��,8��,9��,10��].

Several methods exist to capture transcriptomic signatures

of single cells isolated by mouth-pipetting [3,4] assaying

hundreds of cells at very high resolution. Because of the

limitation with regards to the numbers of cells analyzed,

these methods have mostly been replaced by higher-

throughput methods. Droplet based methods have become

popular due to their simplicity and throughput [11,12]. The

dropletbased-methodDrop-seqhasbeenusedsuccessfully

for Arabidopsis [9��]. Droplet-based single-cell genomic

systems are also commercially available such as the 10x

Chromiumsystemfrom10xGenomicswhichhasbeenused

in many of the recent Arabidopsis single-cell root RNA-seq

reports [5��,8��,10��] (Jean-Baptiste, Zhang, Ryu). Other

plate-based platforms have also been used successfully in

plants including CEL-seq2 [13], a method that relies on in
vitro transcription for library amplification, which has been

used to assay maize pollen [7�,13]. Additionally, several

other methods can be applied to perform single-cell RNA-

seq in plants including plate-based method capable of

profiling full length RNA (SMART-Seq2) [14] or the 3’

end of transcripts (SCRB-Seq) [15]; methods extending in
vitro transcription based library construction with high-

throughput unbiased indexed sorting (MARS-seq2.0)

[16]; microwell techniques that generate single-cell

RNA-seq libraries in situ after capture in nanoliter wells

(Seq-Well) [17]; and single-cell combinatorial indexing

RNA-seq methods (e.g. sci-RNA-seq, Split-seq) [18,19].

Thelatterof thesehavingbeen demonstratedtoscale to the

level of millions of single-cell transcriptomes [20�].

Recent single-cell publications in Arabidopsis have

highlighted the promise of single-cell in plants. All of these

have used the well characterized Arabidopsis root, either

using whole-roots [2��,5��,9��], or specifically enriching for

root tips [8��,10��]. Because plants have a continuous body

plan, we can capture cells of the same type at varying stages

of development and age. Algorithms have been developed

to reconstruct these continua within single-cell RNA-seq

experiments [21,22], describing the sequence of molecular

events that accompany these biological ‘trajectories’. Jean-

Baptiste et al. identified strong hair cell trajectories, and less
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defined trajectories for both cortex and endodermis from

whole seedling roots. Moreover, they were able to use the

total amount of captured mRNA to gain insight into how

total transcriptome size changes as cells progress along

development. While endoreduplication is rampant in root

hair cells, leading to as much as 32 copies per cell in older

hair cells [23], they observed that the absolute amount of

RNA is reduced with the exception of genes specific to

hair cells, which increase as hair develops. This may give

some indication of cells reaching terminal differentiation

[5��]. They also applied a heat stress and found large

changes in gene expression, that were more extreme on

exterior tissues including the epidermis layers and the

cortex [5��]. Shulse et al. used Drop-seq to assay

12 000 root cells, paying special attention to the endoder-

mis trajectory [9��]. They also compared cell proportions

of roots growth with or without sucrose, finding sucrose

grown cells had a significantly higher proportion of hair

cells, this may come as not a huge surprise as it has been

demonstrated visually as well [24]. Zhang et al. isolated

root tips, allowing them to draw trajectories from the

meristem differentiation and root cap differentiation in

great detail. They focus on the lateral root cap, and further

explored the ARABIDOPSIS RESPONSE REGULA-

TOR (arr) family, focusing on existing double and triple

mutants, showing the arr1 arr10 arr12 triple mutant had

reduced LRC cell layers [9��,10��]. Ryu et al. also used

Arabidopsis root tips, identifying most major cell types,

and further focusing on roots lacking non-hair cells (gl2)
and lacking hair cells (rhd6), finding that corresponding

mutants still maintain much of the transcriptional profile

even with the observed phenotypic changes [8��,9��,10��].
These subtle changes that can give rise to drastic pheno-

typic differences have also been uncovered by single-cell

RNA-seq in animal systems [25]. Overall, these studies

had very similar outcomes, showing developmental tra-

jectories of the major cell types (epidermis, endodermis,

cortex, stele and root cap). No novel cell types were

identified across all 5 studies, likely a result of both the

simplicity of the Arabidopsis root architecture and how

very well cell types have been characterized in the

Arabidopsis model system.

Very recent studies have begun to apply single-cell RNA-

seq to other plant model systems besides Arabidopsis. A

recent study assayed 144 early germinal cells in maize

anthers, measuring in great detail the expression changes

during mitosis and meiosis [7�]. Another used microca-

pillary manipulation to capture expression post leaf exci-

sion in physcomytrella finding several thousand differen-

tially expressed genes as a function of excision [6]. This

microcapillary manipulation technique is unique in that it

retains position information for each cell. These studies

highlight the potential of single-cell technologies to char-

acterize plant systems. However, significant challenges

exist in expanding single-cell genomics to less well stud-

ied and more complex systems in plants.
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Methodology limitations
A potential limitation for plant systems may be the fact

many/most of these studies rely on digestion of cell walls

to dissociate tissues into single-cells, a process known as

protoplasting [26,27]. While this method allows collection

of many cells, there are obvious drawbacks. There are

known stress-associated changes during this protoplasting

protocol, including about 300 genes that are increased in

expression in Arabidopsis root protoplasts [26]. Addition-

ally there are clear biases in the capture of certain cell

types, including difficulty in capturing vasculature, and a

bias towards mesophyll cells in leaves (e.g. over repre-

sentation of epidermis, under representation of stele)

[5��]. We predict, much like in animal systems, the best,

least biased method moving forward will be nuclei cap-

ture [28]. This has been done successfully for bulk-based

assays using several methods, including Fluorescence

Activated Nuclei Sorting, filtering crude plant tissue, or

using the INTACT (isolation of nuclei tagged in specific

cell types) method [29,30]. Each of these likely have

unique drawbacks or advantages, but that has yet to be

explored. Most platforms for single-cell genomics can also

be used with nuclei, however to-date this has not been

accomplished in plant systems. While nuclei only contain

only a fraction of the RNA molecules whole cells do, they

are enriched for nascent RNAs [31] which may contribute

to better structure upon visualization [32]. Therefore,

nuclei can result in similar cell type identification com-

pared to whole cell preparations albeit with an increased

gene dropout rates [33]. In animal systems, the power of

these nuclei isolation techniques are highlighted by

recent large scale single-nucleus RNA-seq studies of mice

and human samples [20�,28,34]. An inherent limitation to

the majority of single-cell RNA-seq methods is that they

rely on 3’ end capture using an oligodT first strand

synthesis primer, which carries the cell-specific barcode

and a unique molecular identifier. This method relies on

good annotations of plant 3’ UTRs and is largely incapa-

ble of determining changes in isoforms with the same 3’

end.

Analysis
The application of single-cell RNA-seq to plant systems

has the potential to uncover previously unknown cell

types, heterogeneity within known cell types, shed light

on plant development from common cellular origins to

diverse cell types and determine how each of those cell

types respond to perturbation. Many algorithms have

been developed with the goal of analyzing single-cell

genomics data that aim to identify and characterize cell

types and cell states. Here, we describe a general work-

flow and associated algorithms that can be readily

applied to plant systems Figure 1. Initial processing

steps such as the generation of count matrices, initial

quality control and normalization are not covered in this

review but we suggest [35–37] for further reading on the

topics.
Current Opinion in Plant Biology 2020, 54:114–121
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Figure 1
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Overview of single-cell RNA-seq workflow and methods that can be applied to plants.
Dimensionality reduction techniques provide the ability

to visualize the relationship between single-cell transcrip-

tomes. These algorithms aim to embed cells that are

transcriptionally similar, for example transcriptomes

derived from the same cell type, in similar areas of a

low dimensional representation, typically 2 or 3 dimen-

sions. Popular techniques for this visualization are the t-

distributed stochastic neighbor embedding (t-SNE) [38]

and the uniform manifold approximation projection

(UMAP) [39] algorithms, both of which are implemented

in the single-cell analyses tool boxes Monocle3, Seurat

and Scanpy [20�,40�,41,42]. We recommend the use of

UMAP over t-SNE as it additionally aims to visualize

large-scale distances, that is, the algorithm aims to main-

tain the relationships between different cell types [43].

Additional dimensionality reduction approaches, such as

the potential of heat diffusion for affinity-based transition

embedding (PHATE) algorithm, have been developed

with the explicit goal of preserving both local and global

distances from high-dimensional data such as that

obtained from single-cell RNA seq [44]. Feature selec-

tion, that is performing dimensionality reduction on

genes that are highly variable across the dataset [45] or

expressed in at least a certain proportion of cells, can be

used to aid in the interpretability of the resulting low

dimensional embedding. However, we caution that fea-

ture selection may fail to capture genes that define rare

cell types or key transition states and suggest that
Current Opinion in Plant Biology 2020, 54:114–121 
researchers compare to embeddings without feature

selection.

After visualization, it is useful to cluster single-cell tran-

scriptomes to create discrete groups of cells whose iden-

tity can then be closely examined. Many different algo-

rithms have been applied to cluster single-cell RNA seq

data including more traditional k-means and hierarchical

clustering approaches as well as graph-based methods.

For a detailed review of clustering methods in single-cell

RNA-seq we point the reader to [46]. Graph-based Lou-

vain community detection [47] has been applied to iden-

tify groups of cells from single-cell measurements [48].

Louvain identifies groups of cells across a k-nearest

neighbor graph that have high similarity within a group

and low similarity to other groups of cells in the embed-

ding. Because of its ability to preserve relationships we

suggest clustering cells in PCA space (for example on the

top 50 PCA components). Alternatively, cells can be

clustered in UMAP embeddings. Certain features that

define similarity may be lost upon clustering in UMAP

space but this approach offers considerable speed ups in

the analysis of large datasets. Louvain community detec-

tion enables the identification of both distinct cell clusters

as well as groups of clusters that may describe develop-

mental processes [20�]. Recently, Leiden-based commu-

nity detection has been introduced as an alternative to

Louvain affording improvements in resolution and speed
www.sciencedirect.com
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[49]. Cell identity of the resulting clusters/communities

can be determined based on the expression of known

marker genes or after determining differential gene

expression between groups. As annotation of these data-

sets is laborious and time-consuming, tools that allow cell

type annotations to be transferred across datasets have

recently been developed [50,51].

Clustering of single-cell transcriptomes generally results

in a collection of discrete cluster assignments that may not

adequately represent instances where cells progress con-

tinually along a biological process or in response to a

particular perturbation. In the context of single-cell RNA-

seq in plant systems such instances are expected as cell

types and tissues continually develop over the lifetime of

a plant. Additionally, continua may also arise from small

differences in the spatial distribution of a cell types across

a tissue in the plant. Multiple algorithms have been

developed and applied to single-cell RNA-seq to deter-

mine the location of a cell within these continua. These

‘trajectory inference’ methods aim to define new mea-

sures, ‘pseudotime’ [21,22] or ‘pseudospace’ (in the case

of a spatial continuum) [52,53], along which cells progress

along these biological continua. There are multiple tra-

jectory inference methods to choose from [54], some of

which learn tree topologies and allow for branching

structures [55,56] whereas others, in addition, can learn

disjointed trajectories and more complex topologies

including cycles [20�,57].

The resulting trajectories learned by trajectory inference

methods are generally undirected, that is, it is not known

a priori in which direction cells are progressing. This can

be important in determining the validity or nature of a

trajectory, for example whether cells progress to a more

differentiated state. RNA velocity attempts to predict the

future transcriptional state of a cell based on spliced and

unspliced versions of transcripts found within single-cell

transcriptomes, attempting to unbiasedly determine the

direction of cells across single-cell trajectories [58].

Recently, the concepts introduced by RNA velocity have

been extended to incorporate information from multi-

modal single-cell RNA-seq experiments [59], specifically

protein levels via CITE-seq [60], as well as to build

predictive models of past and future cell states [61].

Despite observing a low percentage of retained introns

from A. thaliana single-cell RNA-seq (�4% informative

for splicing), Jean-Baptiste et al. was able to use RNA

velocity to corroborate the direction of their inferred

pseudotime trajectory of root hair cell development [5��].

The application of single-cell RNA-seq technologies to

plant biology will undoubtedly result in studies per-

formed with many replicates and conditions each of

which has the potential to introduce technical variation

or ‘batch effects’ that can confound downstream analysis.

Several approaches have been developed to correct for
www.sciencedirect.com 
these batch effects. These include the use of linear

regression to remove variation as a function of batch

(limma, combat) [62,63], subtraction of background

mRNA contamination [64,65] and mutual nearest neigh-

bor approaches that attempt to align batches based on the

similarity of cells across experiments [66,67]. The latter

group of algorithms can also be used to perform compara-

tive analyses between perturbations that may alter cell

type identity. We recently applied a mutual nearest

neighbor (MNN) alignment [66] to assign cell identity

after heat-shock of Arabidopsis root cells [5��]. Heat-

shock exposure led to large changes in gene expression

that includes upregulation of heat-shock response genes

with a concomitant global downregulaton of gene expres-

sion limiting cell type annotation via examination of

established marker genes.

Dataset alignment [40�,41,66,67] also allows for the align-

ment of datasets across studies and platforms. To high-

light the usefulness of this approach, we aligned all of the

published Arabidopsis root cell single-cell RNA-seq data-

sets, visualizing approximately 50 000 cells (Figure 2a).

By comparing to existing annotation information from

Jean-Baptiste et al., we visually annotated groups of cells

across all 5 data sets. Interestingly, although all cell types

were present in each dataset there are substantial differ-

ences in the proportion of individual cell types. For

example, 45% of cells in the Zhang et al. dataset were

classified as stele, while on the other extreme the Shulse

et al. only had 6%. This could be a result of differences in

digestion time, where a long digestion (2 hours, Zhang

et al.) may lead to better recovery of interior layers of the

root and/or over digestion of exterior layers compared to

shorter digestion times (1 hour, Shulse et al.). This com-

bination of data sets can fill in many of the developmental

trajectories within and across tissues, allowing for a more

robust characterization of rare cell types in any one

dataset. For example, after alignment we see clear focal

accumulation of genes expressing the proposed quiescent

center cell marker PLP6 (AT2G39220) identified by Ryu

et al. on the basis of just two cellular transcriptomes [8��]
(Figure 2b). Additional marker expression analysis finds

that the placement of these cells in relation to other

annotated cell types indeed supports their characteriza-

tion as QC (Figure 2c). Multiple trajectories are apparent

in this dataset including the development of root hair cells

from the quiescent center, which is apparent by the

expression of early (Figure 2d) and late (Figure 2e) root

hair markers. Trajectory reconstruction using Monocle 3

(Figure 2f) results in the definition of a pseudotime

measurement across root hair development through

which the dynamics of gene expression can be examined

(Figure 2g)

Future direction for single-cell ‘omics in plants
Single-cell methods have immense potential to uncover

mechanisms of gene regulation in plants. Additionally,
Current Opinion in Plant Biology 2020, 54:114–121
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Figure 2
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Alignment of publicly available A. thaliana single-cell RNA-seq datasets allows for the characterization of rare cell types and intermediate cell

states. (a) UMAP embedding of publicly available A. thaliana single-cell RNA-seq datasets after mutual nearest neighbor alignment. Cells are

colored by the study from which they originate. (b) UMAP embedding from (a) colored by whether a cell expresses (red) or doesn’t express (grey)

the proposed [8��] QC marker PLP6. (c) UMAP embedding from (a) colored by cell type as determined via expression of cell type marker genes

from [5��,8��]. (d-e) UMAP embedding of root hair cell development colored by the gene expression level of the early hair marker AT5G04120 (d)

or the late hair marker AT4G34580 (e). Top: Trajectory reconstruction of root hair development using Monocle3. Line denotes the trajectory

identified by Monocle 3. Cells are colored by progression along pseudotime. Bottom: Cartoon depicting the direction of root hair development in

Arabidopsis roots. Arrow corresponds to the direction of inferred pseudotime using Monocle 3. (g) Expression levels of the early hair marker

AT5G04120 (top) or the late hair marker AT4G34580 (bottom) over pseudotime.
resulting datasets can serve as a resource for the plant

research community as a whole. As such, tools that allow

exploration of single-cell gene expression data in Arabi-

dopsis are already available (https://wwwdev.ebi.ac.uk/

gxa/sc/experiments/). Single-cell genomic technologies

could also play a major role in the development of crops.

A major goal of crop genomics is to be able to manipulate

gene expression in a single cell type and a specific time, or

under specific conditions. Methods like laser capture

microdissection and sorting based cell isolation of cells

from reporter lines allow for specific cell type isolation

and identification of associated expression patterns. How-

ever, these techniques are unable to simultaneously study

hundreds or thousands of cell types in an efficient man-

ner. Additionally, generation of reporter lines relies on the

specificity of the chosen marker expression and necessi-

tates creation of transgenic plants, a time intensive

process for each cell type/tissue. Single cell genomics

technologies constitute high-throughput platforms to
Current Opinion in Plant Biology 2020, 54:114–121 
help us understand tissue-level processes at the cell type

and cell state level. Exciting future applications include

unravelling the complex regulation of bundle sheath

photosynthesis in grasses, and identifying approaches

to manipulate root architecture with the goal of increasing

uptake of fertilizers.

Combining this knowledge at single-cell resolution with

new gene expression manipulation tools, like CRISPR/

Cas technologies, would allow for specific changes to gene

expression that improve agriculturally relevant traits and

generate plants buffered against biotic and abiotic stres-

ses. An exciting next step and an obvious extension of

these profiling and gene manipulation tools will be

expanding single-cell RNA-seq to crop species. Other

single-cell genomic tools such as the single-cell assay for

transposable accessible chromatin (scATAC) can also

shed light on plant biology, enabling identification of

accessible regions, a proxy for active regulatory elements,
www.sciencedirect.com
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that are specific to cell-types or the response to abiotic

stress. Plants species have a relatively low diversity of

dynamic accessibility, where across tissues or conditions

only about 5% of accessible regions change, this may be

resolved if in fact this is due to heterogeneity across

development of cell types. Combining scRNA-seq and

scATAC-seq experiments could potentially give insight

into which accessible regions are driving cell-type specific

expression.

Single-cell genomic co-assays, those that simultaneously

measure changes at multiple levels of gene and/or protein

regulation will undoubtedly increase our understanding

of unique molecular and cellular processes in plants.

While the promise of single-cell technologies has massive

potential for plants, caution must be taken when applying

them to systems with fewer genetic tools and less ground-

truth knowledge of cell types, subtissue architecture and

tissue specific expression patterns. Annotation in these

instances will continue to be a major limitation and one

that needs to be addressed in the field using syntelogs and

homologs across species resulting in a higher chance of

identifying tissue specific clusters of cells in less well

characterized plant species.
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