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SUMMARY
Chemical genetic screens are a powerful tool for exploring how cancer cells’ response to drugs is shaped by
their mutations, yet they lack amolecular view of the contribution of individual genes to the response to expo-
sure. Here, we present sci-Plex-Gene-by-Environment (sci-Plex-GxE), a platform for combined single-cell
genetic and chemical screening at scale. We highlight the advantages of large-scale, unbiased screening
by defining the contribution of each of 522 human kinases to the response of glioblastoma to different drugs
designed to abrogate signaling from the receptor tyrosine kinase pathway. In total, we probed 14,121 gene-
by-environment combinations across 1,052,205 single-cell transcriptomes. We identify an expression signa-
ture characteristic of compensatory adaptive signaling regulated in a MEK/MAPK-dependent manner.
Further analyses aimed at preventing adaptation revealed promising combination therapies, including dual
MEK and CDC7/CDK9 or nuclear factor kB (NF-kB) inhibitors, as potent means of preventing transcriptional
adaptation of glioblastoma to targeted therapy.
INTRODUCTION

The response of individual cancer cells to therapy depends on

myriad factors, including location within a tumor, proximity to

vessels, epigenetic history, and genotype. Defining the contribu-

tion of individual genes to how a tumor responds to a given drug

regimen is critically important to personalized therapy and

cancer pathobiology. However, dissecting the mechanisms by

which each gene confers drug resistance is extremely chal-

lenging because the space of gene-drug interactions is enor-

mous. Addressing this requires a scalable, systematic approach

to quantify a drug’s effect on a cell of a given genotype. Chemical

genetics, the study of how exogenous exposures interact

with cells and alter gene-product function and phenotype,1 is a

powerful means to define the genetic dependencies on treat-

ment response across genetically distinct samples. The induc-

tion of genetic heterogeneity via targeted genetic perturbation2–4

(e.g., CRISPR-Cas9) has drastically increased the power of such

screens, allowing for the systematic determination of how per-

turbed gene activity alters response. However, these screens
Ce
This is an open access article under the CC BY-N
are largely limited to determining the effect of the genetic pertur-

bation on gross phenotypic outcomes (viability, cell growth) or

very specific molecular readouts (reporter expression, enzy-

matic activity). Moreover, CRISPR-based chemical genetic

screens with simple phenotypic readouts are largely applied at

the population level. Therefore, they cannot link genotype to

cellular response in a precise, mechanistic manner, and a need

remains for novel methods to systematically interrogate the ge-

netic requirements of effective drug treatment.

Single-cell CRISPR screens5–8 allow in-depth molecular

insight into the effects of genetic perturbation of genes

associated with diverse biological processes, including those

prioritized by bulk CRISPR screens.9,10 Recently, single-cell

CRISPR screens have been performed at genome scale,

providing a rich map of the effect of perturbation.11 To further

probe genetic dependencies to treatment using a single-cell

genomic readout necessitates incorporating additional strate-

gies to multiplex at the level of exposure (drugs, doses) within

an experiment. This multiplexing allows the assay to scale to

large combinatorial spaces and minimizes batch effects.
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Recently, we developed sci-Plex, a nuclear hashing approach

that couples high-throughput chemical screens to combinatorial

indexing RNA sequencing (RNA-seq) (sci-RNA-seq3),12 allowing

for the analysis of the molecular effect of thousands of chemical

perturbations in parallel.13 Here, we present sci-Plex gene-by-

environment (sci-Plex-GxE), which extends sci-Plex to pooled

single-cell CRISPR screens, markedly increasing the number

of unique gene-exposure interactions tested within one experi-

ment and providing the opportunity to define how large cohorts

of genes affect the response of cells to many exposures.

As proof of principle, we apply our approach to probe the

relationship between exposure to the standard-of-care SN1 al-

kylating agent temozolomide (TMZ)14 and genetic perturbation

of the mismatch repair (MMR) pathway, a genetic dependency

to SN1 alkylating-agent-induced damage.15,16 Using this sys-

tem, we develop computational methods for determining the

extent to which a genetic perturbation interferes with or en-

hances the expected effects of a drug on the transcriptome.

We then apply sci-Plex-GxE to determine the molecular conse-

quence of genetic perturbation of 522 kinases in the human

protein kinome17 on the response of 3 glioblastoma (GBM)

cell lines to 4 small-molecule inhibitors targeting the receptor

tyrosine kinase pathway, the most frequently over-activated

pathway in GBM18 and a driver for glioma initiation19 and main-

tenance.20 We find that drug exposure leads to the induction of

a transcriptional program characterized by the upregulation of

genes capable of eliciting an adaptive (drug-induced) resis-

tance phenotype.21,22 Our single-cell genetic screen prioritized

kinases involved with the regulation of MAPK, replication, cell

division, and stress signaling that modulate the expression of

this adaptive compensatory program. Combinatorial chemical

exposure targeting a subset of these kinases confirmed their

involvement in regulating this transcriptional response and

co-treatments that limit the ability of a cell to mount an adaptive

response to kinase therapy.

DESIGN

To determine the contribution of individual genes to the response

to chemical exposure at scale, we combined our single-cell

chemical transcriptomics platform13 with the CROP-seq system

for single-cell CRISPR-Cas9 genetic screening.8 We developed

and optimized a method for the enrichment of single guide

RNA (sgRNA)-containing transcripts5,6,23 from within the context

of sci-RNA-seq3. Our enrichment strategy relies on targeted

capture of the CROP-seq-derived sgRNA-containing puromycin

transcript in combination with standard poly-A mRNA capture

during RT and amplifying sgRNA-containing transcripts from

the final sci-RNA-seq3mRNA library (Figure 1A; STARMethods).

RESULTS

sci-Plex-GxE combines nuclear hashing and CRISPR-
based single-cell genetic screens
To determine the specificity and sensitivity of our assay, we

performed an sgRNA cell-mixing experiment. We transduced

A172 GBM cells expressing either dCas9-KRAB for gene

knockdown (CRISPRi) or dCas9-SunTag for gene overexpres-
2 Cell Genomics 4, 100487, February 14, 2024
sion (CRISPRa)24 with CROP-seq-OPTI libraries containing

either optimized CRISPRi or CRISPRa sgRNAs25 targeting the

HPRT1 locus, a modulator of cell sensitivity to the chemothera-

peutic agent 6-thioguanine (6-TG) and non-targeting controls

(NTCs; Table S1). We arrayed CRISPRi- and CRISPRa-per-

turbed cell pools across columns of a 96-well plate and exposed

cells to increasing concentrations of the purine analog 6-TG or

DMSO control. After 96 h, cells in individual wells were harvested

and subjected to our sci-Plex-GxE protocol (Figure 1A; STAR

Methods). We captured 18,585 single-cell transcriptomes and

used our sci-Plex hash labels to remove doublets and to confi-

dently assign one well/treatment condition to 17,549 cells

(94.4%). We identified one or more sgRNAs in 15,589 of these

treatment-assigned singlet cells (88.8%) (Figure S1A), of which

94.4% expressed 1 sgRNA at a high proportion (Figures S1B

and S1C; Table S2), consistent with the low multiplicity of infec-

tion of our transduction. We next compared cell assignment ac-

cording to captured sgRNAs or sci-Plex hashes. As expected,

cells containing hashes denoting CRISPRi wells were largely as-

signed a CRISPRi sgRNA, and vice versa (Figure 1B). Cells ex-

pressing CRISPRi and CRISPRa sgRNAs against HPRT1 dis-

played a decrease and an increase in HPRT1 expression,

respectively (Figures 1C and 1D). Loss of HPRT1 activity leads

to resistance to the nucleic acid analog 6-TG26 by decreasing

its incorporation into DNA (Figure 1E). As expected, HPRT1-

knockdown cells had a high expression of genes associated

with proliferation in the presence of increasing doses of 6-TG

compared to NTC controls (Figure 1F). This experiment confirms

that sci-Plex-GxE can detect a genetic requirement for individual

cells’ response to a drug exposure via global transcriptome

analysis.

A chemical genomics approach to prioritize genotypes
with strong effects on the response of cells to exposure
The scalability and multiplexing ability of sci-Plex-GxE at the

level of genotypes and exposures allows profiling of the effects

of gene-exposure interactions at scale. However, there are addi-

tional considerations for its application in chemical genomic

screening, namely a need for analysis workflows that allow prior-

itization of genotypes within large-scale perturbation screens

and a way to summarize complex transcriptional effects

compactly. To arrive at analytical solutions to these challenges,

we first applied our approach to a known genetic dependency to

alkylation damage.

TMZ is an oral alkylating agent and the standard of care for

GBM brain cancer chemotherapy14 whose toxicity is mediated

by the formation of O6-meG lesions in the DNA. A cytotoxic

response to TMZ primarily depends on the expression of methyl

guanine methyltransferase (MGMT) and functional DNA MMR

(Figure 2A), with the activity of these pathways mediating

resistance and sensitivity, respectively.27 We profiled the tran-

scriptional consequence of exposing MMR-perturbed A172

CRISPRi cells to increasing doses of TMZ for 96 h. We targeted

MMR pathway components that comprise the O6-meG recogni-

tion complex (MutSɑ: MSH2 and MSH6), the MMR processing

complex downstream of lesion recognition (MutLɑ: MLH1 and

PMS2) (Figure 2A), and controls, including targeting of an

MMR component not involved in the processing of O6-meG



Figure 1. sci-Plex-GxE couples genetic and perturbation screens with high sensitivity and specificity

(A) sci-Plex-GxE workflow including targeted enrichment of CROP-seq-derived gRNA-containing transcripts.

(B) Concordance between CRISPRi and CRISPRa gRNA assignments derived from hashes added to individually labeled CRIPSRi and CRIPSRa pools (hash

CRISPR assignment) and the sequence of captured gRNAs (gRNA CRISPR assignment).

(C and D) Percentage of cells expressing HPRT1 and CRISPRi (knockdown) (C) or CRISPRa (overexpression) (D) systems and gRNAs targeting HPRT1 or NTCs.

Error bars denote the 95% confidence intervals across 100 bootstrap replicates.

(E) Relationship between 6-thioguanine exposure, HPRT1 activity, and cell death.

(F) Aggregate expression of genes associated with proliferation in NTC and HPRT1 knockdown cells after exposure to 6-thioguanine.
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(MSH3), MGMT, which is epigenetically silenced in A17228 and

NTCs (Figures S2A and S2B).

Cells expressing sgRNAs against MGMT, MSH3, or NTCs

displayed a robust, dose-dependent increase in the expres-

sion of the cell-cycle inhibitor and p53 target CDKN1A

(Figure 2B) that was accompanied by decreases in the

expression of genes associated with proliferation (Figure 2C).

Analysis of differentially expressed genes (DEGs) as a func-

tion of genotype and TMZ exposure (false discovery rate

[FDR] < 10%; Table S3) revealed a strong correlation (average

Kendall’s tau of 0.7) across genotypes expected to alter

sensitivity to TMZ at the highest doses of drug

(Figures S2C–S2F; Table S3). The magnitude of these

changes was decreased in cells expressing sgRNAs against

MLH1 and PMS2 and largely abrogated in cells expressing

sgRNAs against MSH2 and MSH6 (Figures 2B and 2C).

Defining gene modules across the union of DEGs (Table S4)
recovered signatures that define genotypes sensitive to TMZ

exposure (NTC, MGMT, and MSH3) and further subdivided

genotypes associated with mismatch recognition (MSH2 and

MSH6) and downstream processing (MLH1 and PMS2) (Fig-

ure 2D). Of note, gene modules associated with p53 signaling

(module 2) varied depending on the perturbed MMR complex,

consistent with activation of DNA damage signaling by lesion

recognition before MutLɑ processing.29

We next sought to summarize differential responses to expo-

sure. Dimensionality reduction did not identify unique cellular

states induced by the interaction of genotypes and TMZ

(Figures S3A–S3D), likely due to the fact that phenotypes per-

turbed bymodulation of MMR activity (e.g., proliferation, cell-cy-

cle arrest) are available to non-perturbed cells. However, MMR

perturbations did alter the distribution of cells across these

shared phenotypes (Figure S3E), which could be summarized

by dimensionality reduction techniques (Figures 2E and 2F).
Cell Genomics 4, 100487, February 14, 2024 3



Figure 2. Defining the relationship between genotypes and summarizing the magnitude of the perturbation after combined genetic and

chemical perturbation

(A) Mechanism of TMZ-induced mismatch repair dependent O6-methyguanine toxicity.

(B and C) Heatmaps depicting CDKN1A expression levels (B) or the aggregate expression of genes associated with proliferation (C) as a function of perturbation

via CRISPRi-mediated knockdown and exposure to TMZ.

(D) Left: heatmap depicting the aggregate expression of genemodules derived from genes that are differentially expressed as a function of genotype in high-dose

(10, 50, and 100 mM) TMZ-exposed and genetically perturbed cells. Right: enriched MSigDB hallmark gene sets for gene modules in the experiment.

(E and F) UMAP embedding of the proportions of cells expressing individual gRNAs (E) or gRNAs against the labeled target (F) across clusters in our experiment.

(G) Expected decrease in pairwise transcriptome distance as cells enact a transcriptional response and cell-cycle arrest after TMZ exposure.

(H) Violin plots depicting the pairwise transcriptome distance of every cell to themean expression of NTC cells exposed to 100 mMTMZ for all genotypes exposed

to increasing doses of TMZ (****p < 0.0001, ***p < 0.001, ns, not significant, one-way ANOVA).

(I) Inferred transcriptional effective concentration (TC50) defined as the concentration of drug necessary to reach 50% of the change in pairwise transcriptome

distance exhibited by TMZ-exposedNTCcells. Dashed line:maximummolarity of an aqueous solution as a threshold for genotypeswhere the drug cannot induce

the effect observed in NTCs. Inset excludes MSH2 and MSH6. Error bars: 95% confidence intervals across 1,000 bootstraps.
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Although this approach can prioritize genotypes within the

context of a screen, its reliance on defining cell states a priori

is limiting when summarizing large-scale genetic screens where

the phenotypic space is large. Therefore, we sought an approach

tailored to prioritizing genotypes in the context of the response to

drug exposure.

We devised a strategy to describe how close a given cell is to

the expected response to a given drug, identifying gene-by-envi-

ronment interactions in a given condition. We first identified a set

of genes that are dynamically regulated as a function of drug

exposure in ‘‘wild-type’’ NTC cells (Figure S3F). Second, for

every dose, we calculated the pairwise transcriptome distance

for every cell relative to the averaged expression profile of NTC

cells exposed to the highest dose of drug based on this set of

drug-responsive genes (Figure S3G).We then quantify the extent
4 Cell Genomics 4, 100487, February 14, 2024
to which a perturbation deviates from the change in pairwise

transcriptome distance of unperturbed cells as they converge

on a drug-induced phenotype, in this case, a TMZ-induced

cell-cycle arrest (Figure 2G). TMZ exposure led to a decrease

in pairwise transcriptome distance across unperturbed

NTC cells and our negative control knockdowns (MGMT

and MSH3), whereas knockdown of PMS2, MLH1, MSH6, and

MSH2 altered the dose-response relationship in pairwise tran-

scriptome distance to NTCs (Figures 2H and S3H–S3J).

We used this framework to define a transcriptional effective

concentration 50 (TC5013) to determine, for each genotype, the

concentration of drug necessary to arrive at 50% of the tran-

scriptional response observed in NTC cells. We repeated

this calculation across 1,000 bootstraps of 75% our dataset,

finding that TC50s were similar for NTC, MGMT, and MSH3



Figure 3. A single-cell kinome-targeting genetic screen identifies subtle effects of perturbation on proliferation-associated gene expression

(A) sci-Plex-GxE screen to determine the contribution of the kinome to the transcriptional response of glioblastoma cells to RTK-pathway-targeted therapies.

(B) Median knockdown level across the cell lines in our screen as a function of sgRNA assignment (real) or a random permutation of sgRNA assignment labels

(random) (Wilcoxon rank-sum test).

(legend continued on next page)
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knockdowns, whereas loss of MLH1, PMS2, MSH6, or MSH2

renders cells largely less sensitive to drug (Figures 2I and S3K),

with knockdown of MSH6 or MSH2 conferring the strongest

drug-resistant phenotype, consistent with previous reports.30

We find our transcriptome distance approach to be robust to

the number of cells per genotype (Figure S3L), able to detect a

graded dose-dependent response to a drug, and able to quantify

the progression of a given cell along that response, characteris-

tics necessary for identifying gene-by-environment interactions

within the context of large-scale single-cell chemical genomic

screens.

Defining the contribution of the human protein kinome
to the transcriptional response induced by kinase
inhibition
Having demonstrated the ability of sci-Plex-GxE to detect the

genetic requirements for exposure to drugs, we sought to sys-

tematically characterize the genes that determine a tumor’s

response to standard-of-care therapy at scale. GBM brain can-

cer is characterized by overactive receptor tyrosine kinase (RTK)

signaling, with�90% tumors presenting with an activatingmuta-

tion in the RTK pathway.18,31 Paradoxically, patients with GBM

display low response rates to RTK-targeted therapy despite

these prominent alterations in RTK signaling. Adaptive32 (i.e.,

pharmacologically induced) activation of pathways that rescue

RTK signaling and/or induce similar downstream effectors is

suspected to be among the most common mechanisms by

which tumors evade therapy,21,22,33,34 including GBM.35,36 Map-

ping out how tumors shift their gene expression programs to

evade the detrimental effects of drug exposure could identify

new opportunities to improve therapy.

To determine the contribution of an entire class of genes to

drug-induced transcriptional adaptation37,38 in GBM, we per-

turbed all members of the human protein kinome17 in 3 GBM

cell lines expressing the dCas9-KRAB CRISPRi system. Our

screen comprised 3,165 sgRNAs targeting 522 kinases, with

five sgRNAs targeting each transcription start site (of which there

may bemore than one per kinase gene) or NTCs and random tar-

geting controls (Table S1). Heterogeneous cell pools were then

exposed to one of four compounds targeting the RTK EGFR

(lapatinib) and PDGFRɑ (nintedanib) and the MAPK and PI3K

signaling pathway components MEK (trametinib) and PI3K

(zstk474) at two doses (1 and 10 mM) or vehicle control for 72 h

and subjected to sci-Plex-GxE. Our screen contained 14,121

gene-by-environment combinations across two independent

transductions for 28,242 unique conditions across 1,052,205

single-cell transcriptomes (Figures 3A and S4A; Table S2). After

excluding putative doublets, we assigned a condition to 991,940

single-cell transcriptomes (94.3% cells) and observed good
(C) Hierarchical clustering of b coefficients for the term from a quasi-Poisson reg

perturbation on the aggregate expression of proliferation-associated genes. Incl

least one treatment in one cell line (Wald test, FDR < 5%).

(D) Heatmap depicting the mean aggregate expression of proliferation-associate

genotype, values were centered on the mean value of untreated cells. Genotypes

NTC and random targeting control genotypes.

(E and F) Violin plots depicting the aggregate expression of proliferation-asso

(C) and (D).
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agreement in expression across replicates in our experiment

(Figure S4B). We identified a sgRNA in 988,276 cells and a me-

dian target knockdown of�70% across our panel of targeted ki-

nases (Figure 3B). The addition of multiple rounds of sgRNA

enrichment PCR increased our assignment rate, suggesting

that the low assignment from 1 or a few enrichment cycles

is due to a bottleneck when amplifying from large, complex

libraries.

Examining the proportion of genotypes in vehicle-exposed

cells to the starting plasmid proportion revealed a depletion of

gRNAs targeting kinases that are likely required by all three can-

cer cell lines.We observed the strongest depletion for 16 kinases

across one or more cell lines (|Z score| > 2; Figure S5A). These

included kinases involved in mitosis (AURKA, AURKB, BUB1B,

PLK1)39 and ribosome maturation (RIOK1 and RIOK2).40,41 We

did not identify kinases that conferred a similarly strong growth

advantage across the cell lines in our study when knocked down.

sci-Plex-GxE reveals kinases required for the
transcriptional response to inhibiting the RTK pathway
We next sought to define the transcriptional changes induced in

NTC cells by targeting the RTK pathway with small molecules.

Exposure to compounds targeting the RTK pathway decreased

cell viability, with the strongest effect observed for cells exposed

to trametinib and the weakest effect for lapatinib (Figure S5B).

This decrease in cell viability was accompanied by a decrease

in the expression of genes associated with proliferation (NTC un-

perturbed genotype; Figures 3C–3F).

To identify kinases required for maintaining expression of the

proliferation gene program, we next modeled proliferation gene

expression as a function of drug, dose, genotype, and their inter-

action using linear regression. These models included kinase-

by-drug ‘‘interaction terms,’’ which capture effects observed in

drug-treated, genetically perturbed cells that are not observed

in vehicle-treated, genetically perturbed cells or NTC cells

exposed to a drug. We identified 60 kinases involved in a signif-

icant interaction term for at least one exposure (Figures 3C and

3D; Wald test, FDR < 5%). We observed concordance for inter-

action terms across treatments within each cell line (Figure 3C)

and high similarity in proliferative expression profiles across

our controls (Figure 3D).

Our analysis identified kinases that led to a significant

decrease in proliferative gene expression across multiple treat-

ments. For example, in A172 cells, knockdown of the genotoxic

stress response PI3K-like kinase SMG142 or the positive regu-

lator of hedgehog signaling STK3643 led to a significant decrease

in proliferation in response to both nintedanib and trametinib

(Figure 3E), suggesting that these kinases are required for prolif-

eration in cells treated with these drugs. We also identified
ression model describing the interaction between drug treatment and kinase

udes kinase perturbations with a significant interaction term in response to at

d genes for proliferation perturbing and controls genotypes from (C). For each

with more than 5 cells at top doses are shown. Red annotation bar highlights

ciated genes for select drugs and proliferation-perturbing genotypes from



(legend on next page)
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kinases whose knockdown led to increased proliferative

gene expression. These included the ACVR1B,44 ACVR2A,45

STK11 (LKB1),46 and MAP2K447 tumor suppressors (Figure 3F).

Knockdown of CDK18, recently described as a co-factor for

ATR-driven homologous recombination repair in GBM,48 led to

a significant increase in proliferation in response to the PI3K in-

hibitor zstk474 (Figure 3F). zstk474, like other PI3K inhibitors, tar-

gets other DNA damage response kinases such as DNA-PKc

and ATM49,50 and was shown to generate strand breaks in

GBM cells.50 Therefore, the effect of CDK18 loss on the prolifer-

ative response to zstk474 exposure may result from an additive

increase in genotoxic stress. Our analysis demonstrates that

our multiplex chemical genomic screen identifies significant

interactions between genotype and exposure, including

kinase perturbations that sensitize or resist the effect of RTK-

pathway-targeting inhibitors on proliferative gene expression.

However, because sci-Plex-GxE profiles the entire transcrip-

tome, it is not limited to viability or proliferation phenotypes

and, in principle, could characterize the genetic requirements

of other gene programs, including transcriptional adaptation to

targeted therapy.

Single-cell RNA-seq identifies shared transcriptional
responses to inhibition of RTK signaling in GBM cell
lines
Targeting over-activated oncogenic kinases induces drastic re-

modeling of gene expression networks,21,22,33,34 enabling tu-

mors to substitute an alternative pathway to restore signaling,

a process termed adaptive resistance.51 To quantify transcrip-

tional adaptation in our GBM lines, we performed regression

analysis of the effects of each drug on each gene’s expression

using quasi-Poisson regression.12 We identified robust dose-

dependent changes in expression, with 4,553, 3,112, and

3,149 genes differentially expressed after exposure to 1 or

more inhibitors in A172, T98G, and U87MG cells, respectively

(Figures 4A–4C and S6A–S6C; Table S5). We observed strong

transcriptional effects upon trametinib exposure and modest

changes in cells exposed to lapatinib, consistent with their ef-

fects on cell viability (Figure S4A). Comparing drug-induced tran-

scriptional responses revealed a large overlap in the genes

altered in the three lines when exposed to the FGFR/VEGFR/

PDGFR family inhibitors nintedanib and trametinib or zstk474

(Figures S6D–S6F), suggesting that RTKs of the FGFR/VEGFR/

PDGFR families are largely responsible for driving MEK and

PI3K activity in these cell lines.

We next sought kinases that were themselves altered at the

RNA level in response to drug exposure, as these might poten-
Figure 4. Exposure to small molecules targeting the RTK pathway driv

nase expression

(A–C) Heatmaps depicting the average expression of genes that are dynamic a

pathway in A172 (A), T98G (B), and U87MG (C) cells (FDR < 5%). Right: aggregate

(B), and U87MG (C) cells. Colors: individual drug treatments.

(D) UMAP embeddings of unperturbed A172 (top), T98G (middle), and U87MG (bo

for the conserved upregulated S1 or downregulated S2 signatures. Arrows denote

inhibition.

(E and F) Gene set enrichment analysis using the MSigDB hallmark, and oncogen

(F; S2) as a function of drug exposure with RTK-targeted therapy.
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tiate regulation of the broader adaptive response. Hierarchical

clustering of all DEGs identified modules of genes with similar

dose-dependent changes across our treatments (Figures 4A–

4C), including 156, 121, and 126 kinases whose expression

was significantly altered in response to exposure in a cell line-

and drug-specific manner. Exposure of A172 and U87MG cells

to nintedanib led to a pronounced increase in ERBB4 expres-

sion, whereas trametinib exposure led to a significant increase

in ERBB4 in A172 (Figure S6G). T98G did not display a significant

increase in ERBB4 expression upon exposure to trametinib, but

we did observe a strong increase in EPHA5 (Figure S6G). Other

kinases displayed similar responses to a given treatment across

all cell lines. For example, exposure of GBM cell lines to trame-

tinib resulted in a significant decrease in the expression of

WEE1, a kinase that negatively regulates the mitotic kinase

CDK1/CDC252 (Figure S6G).

To identify genes with a response to each drug shared across

cell lines, we calculated the Jaccard index to investigate the

number of genes shared between each drug-induced genemod-

ule across every pairwise set of cell lines (Figures S6H–S6K). We

identified two sets of geneswith similar dynamics as a function of

drug exposure across the 3 cell lines, one of which broadly in-

creases with dose (‘‘S1’’) and another that decreases with

dose (‘‘S2’’) (Figures 4A–4D and S6L). The genes in these shared

drug-inducedmodules also had largely concordant responses to

RTK pathway inhibition in a panel of 4 patient-derived GBM lines,

indicating they may constitute a core program of GBM transcrip-

tional response to RTK pathway targeting53–55 (Figures S6M and

S6N; Table S6).

To assess the extent to which genes in the core adaptive pro-

gram are known targets of cancer-associated signaling path-

ways, we performed gene set enrichment analysis (GSEA)

(Figures 4E and 4F). The downregulated S2 gene module was

enriched for genes associated with the regulation of the cell cy-

cle (Figure 4F), consistent with a decrease in pro-proliferative

signaling downstream of RTK pathway inhibition. However, S1

and S2 genes did not neatly map onto gene sets known to be up-

regulated or downregulated in response to inhibiting the RTK

pathway, respectively. For example, the downregulated S2

module was enriched for genes that report on active KRAS

and PI3K-AKT-MTOR signaling, with their decrease in expres-

sion suggesting a block of these pathways. In contrast, the upre-

gulated S1 module was enriched for genes associated with

active mTORC1 signaling, which may report on the activation

of a distinct subset of the mTORC1 program (Figures 4D and

4E). Similarly, mixed results were obtained using the MSigDB

oncogenic signatures gene set collection,56,57 where modules
es changes in gene expression, including dynamic alterations in ki-

s a function of exposure to at least 1 of 4 small molecules targeting the RTK

gene expression across clusters for gene clusters to the left for A172 (A), T98G

ttom) cells colored by treatment, dose, proliferation index, or aggregate scores

the dynamics of S1 and S2 signature expression as a function of RTK pathway

ic signature gene set collections of signatures that increase (E; S1) or decrease



(legend on next page)
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displayed enrichment for gene sets that suggest activation and

inactivation of different subsets of the RTK signaling pathway

(Figures 4D and 4E, right). To identify genes that may mediate

an escape to RTK pathway inhibition, we further examined the

list of genes that make up the S1 upregulated drug-induced

module. This revealed inhibitor-induced increases in the

expression of kinases central to activation of the RTK pathway,

including the RTK EGFR, the cytoplasmic tyrosine kinase

ABL1, the dual-specificity kinase MAP2K1, which encodes the

ERK activator MEK1, and the PI3K catalytic subunits PIK3C2A

and PIK3C2B. Together, these observations are consistent

with the induction of a complex drug- and cell-line-specific

adaptive, compensatory programwith a shared core component

that maymediate survival in response to RTK pathway inhibition.

In order to identify kinases that are required for transcriptional

adaptation in each cell line, we quantified how perturbation of

each kinase alters the expression of the core adaptive gene

modules. We used our pairwise transcriptome distance frame-

work to identify kinases whose loss leads to a deviation in the

drug-induced expression of S1 and S2, finding a significant ef-

fect due to perturbation of 55, 97, and 84 kinases in A172,

T98G, and U87MG cells, respectively. We identified a high over-

lap between kinases that regulate the S1 and S2 genemodules in

the absence of an interaction with drug (gene effects) or with a

significant interaction between genotype and drug (gene-by-

environment effects). In all, we identified 156 kinases whose

perturbation altered compensatory program expression at the

level of gene effect (Figure 5A; FDR < 5%; Table S7) and 97

kinases that altered compensatory program expression with ev-

idence of a gene-by-environment effect (Figure 5B; FDR < 5%;

Table S7). In contrast, comparing the list of kinase modulators

within a given gene module revealed low overlap between ki-

nases with significant gene and gene-by-environment effects

(Figures 5C and 5D).

Across our set of kinase hits, we identified 42 kinaseswith a sig-

nificant gene effect (Figure 5E) and 23 with a significant gene-by-

environment effect (Figure 5F) in 2 or more GBM cell lines. Among

hits, only CDK2 and TIE1 significantly affected the compensatory

program across all 3 GBM lines. CDK2 activity is critical for pro-

gression along the late G1 and early S phases of the cell cycle,

is frequently overactivated in various cancers due to the upregu-

lation of its binding partner, cyclin E,58 and contributes to adapta-

tion to CDK4/6 inhibition.59 TIE1 encodes an orphan RTK most

frequently associated with endothelial cells and the regulation of

angiogenesis by modulating the activity of the TIE2 RTK.60 In

cancer, TIE2 protein expression has been identified outside of

the endothelial compartment and is positively correlated with

increased tumor grade in glioma.61 Moreover, TIE1 expression

has been shown to induce resistance to chemotherapy in ovarian
Figure 5. Perturbation of individual kinases alters the global transcript

(A and B) Venn diagram of the overlap between kinases whose knockdown leads

without (A) or with (B) a significant interaction effect.

(C and D) Venn diagram of the overlap between kinases whose knockdown leads t

with a significant interaction effect.

(E and F) Human protein kinome tree, adapted from CORAL,64 highlighting kinase

adaptive program without (E) or with (F) a significant interaction effect with drug

significant effect in 1, 2, or all GBM cell lines (FDR < 5%).
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cancer by modulating the expression of DNA damage repair pro-

teins through activation of the transcription factor KLF5.62

Among kinases with a significant interaction effect is BRD4

(Figure 5A), an epigenetic reader of histone acetylation and atyp-

ical kinase that phosphorylates the C-terminal domain of RNA

polymerase II and serves as a master regulator of eukaryotic

transcription.63 Previous studies have shown that BRD4 activity

mediates adaptive transcriptional resistance to MEK inhibition in

triple-negative breast cancer.21 Our results suggest that BRD4

serves a similar role in response to RTK pathway targeting in

GBM cells.

In all, the kinases required for compensation are involved

in diverse cellular processes, including cell-cycle progression

(AURKA, AURKB, BUB1, PLK3, PLK4, VRK1, VRK2), ribosome

maturation (RIOK2), cytoskeletal reorganization (CDC42BPA,

CDC42BPB), and proliferative MAPK signaling (ALK, AKT2,

BRAF, ERBB2, ERBB3, ERBB4, FGFR1, MAP4K1, MAPK3,

SRC). Given the enrichment for cell-cycle processes, we

explored whether transcriptional changes upon targeting the

RTK pathway are a consequence of accumulation at a particular

cell-cycle stage as opposed to a response to cellular stress. We

observed a correlation between proliferation, G1/S, and G2/M

scores in untreated cells and our signatures (Figures S7A and

S7B). However, exposing cells to RTK pathway inhibitors led to

altered expression of these genes regardless of proliferation or

inferred cell-cycle stage (Figures S7C and S7D), suggesting

that the cell-cycle stage, baseline RTK pathway activity, and

possibly their interaction can affect this adaptive compensatory

program.

sci-Plex-GxE identifies kinases required for
transcriptional adaptation to targeted therapy
A major goal of our workflow is to define the genes required for

escaping a therapy, which might then suggest targets for new

combinatorial therapies with better efficacy. Therefore, we

sought to recapitulate the effects of CRISPR-based knockdown

on individual kinases using small molecules. We exposed cells to

one of 23 compounds (Table S8) targeting the activity of 16 ki-

nase hits from our screen (AKT, ALK, ATM, RAF, CDK, CHEK,

DDR, EIF2AK, FGFR, IKK [CHUK], MEK, PDGFR, PLK, RIPK,

and RPS6K families) prioritized from those that are hits in more

than one cell line or for which related kinases are hits in one

cell line (CHEK1, CHEK2) as well as those that are directly

involved in RTK signaling (AKT). We also exposed cells to 3 com-

pounds targeting kinases in closely related pathways (ATR,

CDC7, CDK4/6, MTOR) and small molecules that produce or

are involved in response to genotoxic cell stress (TMZ, doxoru-

bicin, p53 activator) alone or in combination with the MEK inhib-

itor and potent inducer of the compensatory program trametinib
ional response to RTK-pathway-targeting small molecules

to a significant shift in the S1 or S2 signatures of the putative adaptive program

o a significant shift in the expression of the S1 (C) or S2 (D) signatures without or

s whose knockdown leads to a significant shift in the expression of a putative

exposure. The size and color of each circle denote whether we identified a



Figure 6. Single and combinatorial kinase inhibition identifies chemical regulators of MEK-inhibition-dependent dynamic expression

changes

(A) Circos heatmap of the correlation of the response to single drug exposures to the compensatory program enacted by MEK inhibition with trametinib.

Pearson’s correlation coefficient between vectors of normalized effect estimates (bcoefficients) for the effect of drug on genes in the adaptive program. Significant

correlations (FDR < 5%) with a Pearson’s ⍴ ±0.2 are shown.

(B) Density plots of upregulated and downregulated signatures for T98G cells treated with the MEK inhibitor (MEKi) trametinib, the CDK4/6i palbociclib, or the

CDC7i PHA-767491. Red vertical lines: mean signature expression of vehicle-exposed cells. *FDR < 5%.

(C) UMAP embeddings of the pairwise correlation of combinatorial trametinib exposures across genes that compose the compensatory program enacted by RTK

pathway inhibition. Shapes refer to individual cell lines. Pearson’s ⍴trametinib relates to the Pearson’s correlation coefficient across aggregated expression scores

for the specified drug treatment and trametinib exposure.

(D) UMAP as in (C), colored by the correlation of each combinatorial exposure to exposure with trametinib alone.

(E) UMAP as in (C), colored by response group clusters identified by Leiden-based community detection.

(legend continued on next page)
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(Figure 5B). After 72 h, cells were harvested and unique condi-

tions multiplexed using sci-Plex and subjected to sci3-RNA-

seq, capturing 213,404 nuclei across single- and combinatorial

drug exposures (Table S6).

We first investigated the ability of each chemical in isolation to

phenocopy the response to trametinib exposure. We performed

a correlation analysis of the expression of genes in the adaptive

program between cells treated with trametinib, the strongest

inducer of these signatures, and compounds that had a measur-

able effect on trametinib-regulated transcription as monother-

apy (defined as compounds with >100 DEGs in two or more

cell lines, FDR < 5%). Exposure to the CDK4/6 inhibitor palboci-

clib elicited the strongest ‘‘trametinib-like’’ response across all

cell lines (Figures 6A and S8A; p < 0.05 and Pearson’s rho

> ±0.2). The next highest trametinib-like responses were elicited

by inhibition of the RTKs PDGFR (nintedanib) and FGFR (infigra-

tinib) and the inhibition of its upstream regulator, RAF (AZ628),

although this varied by cell line (Figures 6A and S8B–S8D). Expo-

sure to the dual CDC7/CDK9 inhibitor PHA767491 was strongly

anti-correlated to the effects of trametinib exposure (Figure 6A).

CDC7, or DBF4-dependent kinase (DDK), promotes replication

initiation by phosphorylating the minichromosome maintenance

(MCM) helicase complex.65 CDK9 complexes with cyclin T to

form the positive transcriptional factor elongator (pTEFb) com-

plex, a regulator of RNA polymerase II.66 The role of CDK9 sug-

gests the possibility that altered regulation of at least the subset

of the program upregulated by exposure is a result of a non-spe-

cific effect on global transcription. However, the concomitant in-

crease in the downregulated signature (Figure 6B) suggests that

the observed effect of PHA767491 on drug-induced transcrip-

tion is not due to a non-specific effect and may be due to addi-

tional roles for CDK9 in progression across the S phase of the cell

cycle.67,68 Although CDK9 is a hit in our screen, we cannot rule

out that additional loss of CDC7 activity and its effect on the

cell cycle do not contribute to this drug-induced phenotype.

We next sought to identify combinatorial exposures of drugs

that could block the adaptive program induced by trametinib

alone. We used quasi-Poisson regression to model the effects

of co-exposure on each gene in the adaptive program. We

then calculated the correlation of gene-level effects across all

co-exposures, grouped combinatorial treatments by the similar-

ity of transcriptional effects summarized across this correlation

space, and visualized the results with uniform manifold approx-

imation and projection (UMAP) (Figure 6C). We identified 4

groupings of combinatorial exposures, including those that

differed by the extent of induction of the trametinib-induced

signature as defined as the correlation to trametinib exposure

alone (Figures 6D and 6E).

Response group 2 had the largest anti-correlated

effect to trametinib exposure alone. Response group 2 was
(F) Boxplots of the expression of signatures that make up the compensatory prog

cells to trametinib alone such that combinations that increase signature express

signature expression relative to trametinib. Line: median score per group, hinges

(G) Density plots of upregulated signature scores of GBM cells treated with t

GSK690693, the NF-kBi BMS345541, and the dual CDC7/CDK9i PHA767491. P

(H) Pathway summary of proteins whose targeting alone (top) or in combination wi

program enacted by MEK inhibition.
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composed of co-exposures with AZD7762 (CHK inhibitor

[CHKi]), BMS345541 (nuclear factor kB [NF-kB]i), doxorubicin

(topoisomerase IIi), PHA767491 (CDC7/CDK9i), and volasertib

(PLK1i) across all 3 cell lines and infigratinib (FGFRi) for 2

of the 3 cell lines, and the group significantly attenuated induc-

tion of the compensatory program (Figure 6F; FDR < 1%).

Response group 3, made up of co-exposures with GSK690693

(AKTi), MK2206 (AKTi), temsirolimus (MTORi), and nintedanib

(PDGFRi) in all 3 cell lines and Nutlin3A (MDM2i) in 2 of 3 cell

lines, was also anti-correlated to trametinib exposure alone.

However, the average effect of the response group on the aggre-

gated expression of compensatory modules was not signifi-

cantly different from trametinib alone. AKT and mTOR have pre-

viously been identified to enact compensatory signaling,69 and

this group may reflect modest blocks to the compensatory pro-

gram that are not evident across the full signature. In A172 cells,

we also found evidence that co-exposure with the RAFi AZ628

and the CDK4/6i palbociclib exacerbated the compensatory

program (Figure 6G). This may have implications for the emer-

gence of resistance to BRAF-mutated tumors treated with

combinatorial MEK and RAF inhibition.70–72

Interestingly, these differential responses to combinatorial in-

hibition could not be readily explained based on differential ef-

fects on viability. For example, trametinib co-exposure with pal-

bociclib and PHA767491 had similar dose-dependent effects

on viability despite opposing effects on compensatory program

expression (Figure S9). Our combined chemical and genetic

perturbation screen defined a compensatory transcriptional

response to MEK inhibition and identified kinases that signifi-

cantly regulate the two gene modules that compose this

program. Our chemical genomics approach validated the

dependence of this program on CDK4/6 activity and demon-

strated that the inhibition of several kinases, including CHK,

CDC7/CDK9, FGFR, IKK, AKT, and mTOR, interfered with the

ability of GBM cells to mount this compensatory program

(Figure 6H).

DISCUSSION

Defining the molecular basis by which individual genes alter the

response to therapy has important implications for cancer treat-

ment. The multiplexing ability afforded by single-cell screens is

particularly well suited to probe the large combinatorial space

of genetic perturbations and drug treatments. Here, we intro-

duce sci-Plex-GxE, a workflow for high-throughput chemical

genomic screens at single-cell resolution and demonstrate its

capability to identify the genetic architecture that drives

response to exposure by investigating the effect of the human

protein kinome on the response of GBM tumor cells to RTK

pathway inhibition.
ram. Values for each combinatorial exposure are centered on the response of

ion relative to trametinib are positive, and vice versa for those that decrease

: 25th and 75th quartiles, whiskers: min/max values, points: outliers.

he MEKi trametinib alone or in combination with the RAFi AZ628, the AKTi

lots ordered by the effect of treatment on the signature.

th MEK inhibition (bottom) blocks (blue) or exacerbates (red) the compensatory



Technology
ll

OPEN ACCESS
The rapid advance of cancer genomics has identified genetic

variants and mutations that provide cells with the capacity for

malignant transformation and the acquisition of key phenotypes

that define a tumorigenic cell state.73 Genetic screens have

arisen as a powerful means to identify cancer dependencies3,4,74

as well as regulators of toxicity in response to therapeutic expo-

sure.75 However, most of these screens report on a limited set of

phenotypes (proliferation, viability) and cannot discern, for

example, whether dependencies that similarly alter viability

differentially induce unwanted secondary effects that result in

the development of resistance.

Perturb-seq approaches that combine CRISPR-based gene

editing with a single-cell transcriptomic readout have been

applied at genome scale, defining the effect of perturbation of

all genes on transcriptional networks.11 Our recent development

of multiplexing approaches that allow single-cell technologies to

be used in high-throughput chemical transcriptomics screens

and its combination with Perturb-seq provide an opportunity to

understand how cancer cells respond to therapy at scale. Our

sci-Plex-GxE platform for multiplex single-cell genetic and

chemical perturbation screens remains sensitive to capturing

both cell-expressing and exogenous tags that report on genetic

perturbation (gRNA-containing transcripts) and chemical expo-

sure (cell hashing). Coupled with our computational workflow,

we efficiently prioritize genotypes that significantly shift drug-

induced gene expression changes.

To demonstrate the ability of our approach to identify the ge-

netic requirements of the response to exposure, we applied

sci-Plex-GxE to define the contribution of all kinases in the hu-

man protein kinome to the dynamic response of GBM to the in-

hibition of 4 nodes in the RTK pathway, frequently overactivated

in the disease. We identified diverse molecular changes in

response to RTK pathway inhibition, revealing many kinases

whose loss significantly alters proliferative gene expression,

suggesting an increased sensitivity to detect growth changes

compared to bulk CRISPR screening. We identified two tran-

scriptional modules whose expression changes are conserved

across cell lines screened, which we posit are part of one

conserved transcriptional program. This program is associated

with changes in the expression of components of the RTK

pathway, including evidence of adaptive resistance character-

ized by increased expression of genes that can activate or

bypass RTK signaling. Our genetic screen identified kinases

whose loss altered the induction of this resistance program.

We used a chemical genomic approach to validate the contribu-

tion of a subset of these kinases to the regulation of this adaptive

program. We identified compounds targeting cellular activities

that can positively (CDK4/6i, FGFRi, PDGFRi, RAFi) and nega-

tively (AKTi, IKKi, CDK2, CDC7/CDK9i) modulate this transcrip-

tional adaptation in isolation (Figure 6H, top). In addition, we

identified compounds that significantly modulate the induction

of this adaptive program after its activation via trametinib expo-

sure. In particular, we find that combinatorial inhibition of MEK

and AKT, CDK2, CDC7/CDK9, FGFR, MTOR, MDM2, NF-kB,

or PLK signaling can block the induction of the core adaptive

transcriptional program in GBM cells (Figure 6H, bottom). These

combinations may be promising combinatorial therapies that

minimize unwanted resistance-associated changes in response
to MEKi monotherapy. However, our study is limited to the prior-

itization of inhibitor combinations based on a desired transcrip-

tional effect. In-depth biochemical and in vivo functional charac-

terizations are necessary to confirm the ability of combinatorial

exposures to increase efficacy.

Interestingly, our validation experiment targeting FGFR activity

had opposing effects to mono- or combination therapy, which

may highlight the context dependence of transcriptional adapta-

tion in GBM.We also observe a confounding response to the tar-

geting of CHK and MDM2 activity. CHK kinases are master reg-

ulators of the response to DNA damage and activate the p53

transcription factor to enact cell-cycle arrest or apoptotic cell

fates. MDM2 is a negative regulator of p53 protein levels, and

its inhibition stabilizes p53 in the cell. Despite CHK and MDM2

inhibition having opposing effects on p53 activity, both expo-

sures led to a block in the induction of trametinib-induced

compensatory transcription. p53 is known to negatively regulate

CHK1 expression76; therefore, our results may be explained by

both exposures leading to a decrease in CHK activity in the cell.

The work presented here constitutes a new approach to prior-

itize combinatorial therapies based on their induction of gene

expression programs of interest. sci-Plex-GxE has the potential

to complement existing drug discovery pipelines, prioritizing

anti-tumor therapies that not only lead to desired anti-prolifera-

tive or pro-apoptotic effects but also minimize the possibility of

therapeutic resistance. Scrutiny of transcriptional adaptation

and its context-dependent genetic requirements could also

reveal modules of important genes (e.g., immune checkpoint,

antigen processing, and presentation machinery) that are modi-

fied by anti-cancer therapy and, therefore, highlight opportu-

nities for combinatorial treatment.

The sci-Plex-GxE platform is highly flexible to user needs and

sequencing budgets. It can be applied to probe the effect of a

limited number of genotypes on the response to many chemical

exposures or scaled genome-wide with onlymoderate increases

in the costs of generating single-cell mRNA libraries (less than

$0.01 per cell). Moreover, our approach has significantly lower

multiplet (doublet) rates (less than 1%) compared to most com-

mercial approaches and has the capacity for highly efficient mul-

tiplexing of genetic perturbations and applied exposures. Com-

bined with recent developments and decreases in the cost of

library generation for single-cell combinatorial indexing RNA-

seq,77,78 our sci-Plex-GxE approach dramatically increases the

ability of researchers to profile large combinatorial spaces.

Limitations
Our kinome-wide single-cell genetic screen aims to define the

genetic dependence of the transcriptional response to kinase-

directed therapy. However, our approach cannot fully account

for nodes that mediate response to therapy where redundancy

in kinase signaling exists. Incorporation of multiplex editing tech-

niques such as those used for paralog screens79 and genetic

interaction screens80 could reveal such instances of redun-

dancy. Extending our platform to patient-derived models could

identify additional transcriptional programs of physiological

importance. Even with an expanded compendium of genotypes

probed and responses profiled, our RNA readout does not cap-

ture all changes that occur as cells respond to inhibition.
Cell Genomics 4, 100487, February 14, 2024 13
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However, our approach could be used to identify general geno-

type/response relationships prioritized for in-depth analysis and

integration with additional -omics modalities.81,82 Although the

majority of inhibitors tested are in direct clinical use, we acknowl-

edge that our results are dependent on the exact chemical

means of inhibition and that a drug’s precise polypharmacol-

ogy83,84 could alter the induction of drug-induced programs.

Lastly, our approach to annotating transcriptional differences

may not be sensitive enough to identify subtle drug-induced pro-

grams. However, future endeavors can leverage the scale of our

dataset for the training of deep learning models85–87 that could

extract additional biological insight.
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di Pietro, M., Marra, G., and Jiricny, J. (2003). Methylation-induced G2/M

arrest requires a full complement of the mismatch repair protein hMLH1.

EMBO J. 22, 2245–2254.

17. Manning, G., Whyte, D.B., Martinez, R., Hunter, T., and Sudarsanam, S.

(2002). The protein kinase complement of the human genome. Science

298, 1912–1934.

18. Brennan, C.W., Verhaak, R.G.W., McKenna, A., Campos, B., Noushmehr,

H., Salama, S.R., Zheng, S., Chakravarty, D., Sanborn, J.Z., Berman, S.H.,

et al. (2013). The somatic genomic landscape of glioblastoma. Cell 155,

462–477.

19. Körber, V., Yang, J., Barah, P., Wu, Y., Stichel, D., Gu, Z., Fletcher, M.N.C.,

Jones, D., Hentschel, B., Lamszus, K., et al. (2019). Evolutionary Trajec-

tories of IDH Glioblastomas Reveal a Common Path of Early Tumorigen-

esis Instigated Years ahead of Initial Diagnosis. Cancer Cell 35, 692–

704.e12.

20. Vivanco, I., Robins, H.I., Rohle, D., Campos, C., Grommes, C., Nghiem-

phu, P.L., Kubek, S., Oldrini, B., Chheda, M.G., Yannuzzi, N., et al.

(2012). Differential sensitivity of glioma- versus lung cancer-specific

EGFR mutations to EGFR kinase inhibitors. Cancer Discov. 2, 458–471.

21. Zawistowski, J.S., Bevill, S.M., Goulet, D.R., Stuhlmiller, T.J., Beltran,

A.S., Olivares-Quintero, J.F., Singh, D., Sciaky, N., Parker, J.S., Rashid,

N.U., et al. (2017). Enhancer Remodeling during Adaptive Bypass to

MEK Inhibition Is Attenuated by Pharmacologic Targeting of the P-TEFb

Complex. Cancer Discov. 7, 302–321.

22. Stuhlmiller, T.J., Miller, S.M., Zawistowski, J.S., Nakamura, K., Beltran,

A.S., Duncan, J.S., Angus, S.P., Collins, K.A.L., Granger, D.A., Reuther,

R.A., et al. (2015). Inhibition of Lapatinib-Induced Kinome Reprogramming
in ERBB2-Positive Breast Cancer by Targeting BET Family Bromodo-

mains. Cell Rep. 11, 390–404.

23. Hill, A.J., McFaline-Figueroa, J.L., Starita, L.M., Gasperini, M.J., Matreyek,

K.A., Packer, J., Jackson, D., Shendure, J., and Trapnell, C. (2018). On the

design of CRISPR-based single-cell molecular screens. Nat. Methods 15,

271–274.

24. Gilbert, L.A., Larson, M.H., Morsut, L., Liu, Z., Brar, G.A., Torres, S.E.,

Stern-Ginossar, N., Brandman, O., Whitehead, E.H., Doudna, J.A., et al.

(2013). CRISPR-mediatedmodular RNA-guided regulation of transcription

in eukaryotes. Cell 154, 442–451.

25. Horlbeck, M.A., Gilbert, L.A., Villalta, J.E., Adamson, B., Pak, R.A., Chen,

Y., Fields, A.P., Park, C.Y., Corn, J.E., Kampmann, M., and Weissman,

J.S. (2016). Compact and highly active next-generation libraries for

CRISPR-mediated gene repression and activation. Elife 5, e19760.

26. Glaab, W.E., Risinger, J.I., Umar, A., Barrett, J.C., Kunkel, T.A., and Tin-

dall, K.R. (1998). Resistance to 6-thioguanine in mismatch repair-deficient

human cancer cell lines correlates with an increase in inducedmutations at

the HPRT locus. Carcinogenesis 19, 1931–1937.

27. Fu, D., Calvo, J.A., and Samson, L.D. (2012). Balancing repair and toler-

ance of DNA damage caused by alkylating agents. Nat. Rev. Cancer 12,

104–120.

28. Gaspar, N., Marshall, L., Perryman, L., Bax, D.A., Little, S.E., Viana-Per-

eira, M., Sharp, S.Y., Vassal, G., Pearson, A.D.J., Reis, R.M., et al.

(2010). MGMT-Independent Temozolomide Resistance in Pediatric Glio-

blastoma Cells Associated with a PI3-Kinase–Mediated HOX/Stem Cell

Gene Signature. Cancer Res. 70, 9243–9252.

29. Yoshioka, K.-I., Yoshioka, Y., and Hsieh, P. (2006). ATR kinase activation

mediated byMutSalpha andMutLalpha in response to cytotoxic O6-meth-

ylguanine adducts. Mol. Cell 22, 501–510.

30. McFaline-Figueroa, J.L., Braun, C.J., Stanciu, M., Nagel, Z.D., Mazzucato,

P., Sangaraju, D., Cerniauskas, E., Barford, K., Vargas, A., Chen, Y., et al.

(2015). Minor Changes in Expression of the Mismatch Repair Protein

MSH2 Exert a Major Impact on Glioblastoma Response to Temozolomide.

Cancer Res. 75, 3127–3138.

31. Cancer Genome Atlas Research Network, and The Cancer Genome Atlas

Research Network (2008). Comprehensive genomic characterization de-

fines human glioblastoma genes and core pathways. Nature 455,

1061–1068.

32. Pazarentzos, E., and Bivona, T.G. (2015). Adaptive stress signaling in tar-

geted cancer therapy resistance. Oncogene 34, 5599–5606.

33. Akhavan, D., Pourzia, A.L., Nourian, A.A., Williams, K.J., Nathanson, D.,

Babic, I., Villa, G.R., Tanaka, K., Nael, A., Yang, H., et al. (2013). De-repres-

sion of PDGFRb transcription promotes acquired resistance to EGFR tyro-

sine kinase inhibitors in glioblastoma patients. Cancer Discov. 3, 534–547.

34. Duncan, J.S., Whittle, M.C., Nakamura, K., Abell, A.N., Midland, A.A., Za-

wistowski, J.S., Johnson, N.L., Granger, D.A., Jordan, N.V., Darr, D.B.,

et al. (2012). Dynamic reprogramming of the kinome in response to tar-

geted MEK inhibition in triple-negative breast cancer. Cell 149, 307–321.

35. Wei, W., Shin, Y.S., Xue, M., Matsutani, T., Masui, K., Yang, H., Ikegami,

S., Gu, Y., Herrmann, K., Johnson, D., et al. (2016). Single-Cell Phospho-

proteomics Resolves Adaptive Signaling Dynamics and Informs Targeted

Combination Therapy in Glioblastoma. Cancer Cell 29, 563–573.

36. Tanaka, K., Sasayama, T., Irino, Y., Takata, K., Nagashima, H., Satoh, N.,

Kyotani, K., Mizowaki, T., Imahori, T., Ejima, Y., et al. (2015). Compensa-

tory glutamine metabolism promotes glioblastoma resistance to mTOR in-

hibitor treatment. J. Clin. Invest. 125, 1591–1602.

37. Sztal, T.E., and Stainier, D.Y.R. (2020). Transcriptional adaptation: a

mechanism underlying genetic robustness. Development 147,

dev186452.

38. Kontarakis, Z., and Stainier, D.Y.R. (2020). Genetics in Light of Transcrip-

tional Adaptation. Trends Genet. 36, 926–935.
Cell Genomics 4, 100487, February 14, 2024 15

http://refhub.elsevier.com/S2666-979X(23)00339-7/sref7
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref7
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref8
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref8
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref8
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref8
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref9
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref9
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref9
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref9
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref10
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref10
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref10
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref10
https://doi.org/10.1101/2021.12.16.473013
https://doi.org/10.1101/2021.12.16.473013
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref12
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref12
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref12
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref12
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref13
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref13
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref13
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref13
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref14
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref14
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref14
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref14
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref15
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref15
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref15
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref16
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref16
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref16
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref16
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref17
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref17
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref17
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref18
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref18
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref18
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref18
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref19
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref19
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref19
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref19
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref19
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref20
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref20
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref20
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref20
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref21
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref21
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref21
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref21
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref21
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref22
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref22
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref22
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref22
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref22
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref23
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref23
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref23
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref23
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref24
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref24
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref24
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref24
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref25
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref25
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref25
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref25
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref26
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref26
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref26
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref26
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref27
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref27
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref27
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref28
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref28
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref28
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref28
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref28
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref29
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref29
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref29
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref30
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref30
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref30
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref30
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref30
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref31
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref31
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref31
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref31
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref32
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref32
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref33
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref33
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref33
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref33
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref34
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref34
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref34
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref34
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref35
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref35
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref35
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref35
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref36
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref36
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref36
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref36
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref37
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref37
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref37
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref38
http://refhub.elsevier.com/S2666-979X(23)00339-7/sref38


Technology
ll

OPEN ACCESS
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ZSTK474 Selleckchem Cat#S1072

Alectinib Selleckchem Cat#S2762

AZ628 Selleckchem Cat#S2746

AZD7762 Selleckchem Cat#S1532

BID1870 Selleckchem Cat#S2843

BMS-345541 Selleckchem Cat#S8044

DDR1IN Selleckchem Cat#S7498

Doxorubicin Selleckchem Cat#E2516

GSK690693 Selleckchem Cat#S1113

Infigratinib Selleckchem Cat#S2183

KU-55933 Selleckchem Cat#S1092

MK-2206 Selleckchem Cat#S1078

Nutlin-3A Selleckchem Cat#S8059

Palbociclib Selleckchem Cat#S4482

PHA-767491 Selleckchem Cat#S2742

RIPA-56 Selleckchem Cat#S6511

Roscovitine Selleckchem Cat#S1153

Salubrinal Selleckchem Cat#S2923

Temsirolimus Selleckchem Cat#S1044

VE-821 Selleckchem Cat#S8007

Volasertib Selleckchem Cat#S2235

Deposited data

Fastq files, final count matrix, cell metadata,

gene metadata, pre-processed datasets

This manuscript GEO: GSE225775

Original code This manuscript Github: https://github.com/

cole-trapnell-lab/sci-Plex-GxE

Experimental models: Cell lines

A172 ATCC Cat#CRL-1620

T98G ATCC Cat#CRL-1690

U87MG ATCC Cat#HTB-14

HEK293T ATCC Cat#CRL-3216

GBM4 Drs. Robert Rostomily and Andrei Mikheev,

University of Washington and Houston

Methodist Hospital

GBM4

GBM8 Drs. Robert Rostomily and Andrei Mikheev,

University of Washington and Houston

Methodist Hospital

GBM8

GSC-0131 Dr. Patrick Paddison, Fred Hutchinson

Cancer Research Center

GSC-0131

(Continued on next page)

e1 Cell Genomics 4, 100487, February 14, 2024

https://github.com/cole-trapnell-lab/sci-Plex-GxE
https://github.com/cole-trapnell-lab/sci-Plex-GxE


Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

GSC-0827 Dr. Patrick Paddison, Fred

Hutchinson Cancer Research Center

GSC-0827

Oligonucleotides

sgRNA targeting RT primers 5’-/5Phos/

CAGAGCNNNNNNNN-[10bp-barcode]-

ACTTTTTCAAGTTGATAACGGACTAGC

CTTATTT-30

This manuscript N/A
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McFaline-Figueroa (jm5200@columbia.edu).

Materials availability
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Data and code availability
d All processed and raw data are available for download from the National Center for Biotechnology Information (NCBI) Gene

expression omnibus (GEO) under series number GSE225775.

d All code used to reproduce the presented analyses is available on github at https://github.com/cole-trapnell-lab/sci-Plex-GxE

and released in Zenodo as v1.0.0 at http://doi.org/10.5281/zenodo.10293222.

d Additional information required to analyze the data in this paper are available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Cell lines and cell culture
A172, T98G, and U87MG glioblastoma cell lines were purchased from ATCC. Cells were cultured in DMEMmedia (ThermoScientific)

supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin (P/S, ThermoScientific). GBM4, GBM8, GSC0131, and

GSC0827 glioma stem cell (GSC) cultures have been previously described53,88,89 and were provided by Drs. Robert Rostomily and

AndreiMikheev, University ofWashington andHoustonMethodist Hospital (GBM4 andGBM8) andDr. Patrick Paddison, FredHutch-

inson Cancer Research Center (GSC0131 andGSC0827). GSC cultures weremaintained in a defined serum-free medium at 37C and
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5% O2 to mimic in vivo conditions. GBM4 and GBM8 were cultured in Neurobasal medium (ThermoScientific) supplemented with

B-27 and N2 (ThermoScientific), 20 ng/mL EGF (PeproTech), 20 ng/mL FGF (PeproTech) and 5 mg/mL heparin (Sigma). GSC0131

and GSC0827 were cultured in Neurocult medium (StemCell Technologies) supplemented with 20 ng/mL EGF (PeproTech),

20 ng/mL FGF (PeproTech), and 0.8 mg/mL heparin (Sigma). All cultures were negative for Mycoplasma contamination.

METHOD DETAILS

Expression of CRISPRi/a systems
For the generation of CRISPRi-mediated knockdown cells, lentiviral particles encoding dCas9-BFP-KRAB were generated by

transfecting HEK293T cells with plasmids encoding dCas9-BFP-KRAB (pHR-SFFV-dCas9-BFP-KRAB, Addgene 46911) and the

ViraPower lentiviral packaging mix (ThermoScientific). Transfection was performed using lipofectamine 2000 (ThermoScientific) in

OptiMEM (ThermoScientific) following the forward transfection protocol provided by the manufacturer scaled up to 15 cm dishes.

72 h post-transfection, media was collected and filtered using a 50 mL 0.22 mm steriflip filtration system. A172, T98G, and

U87MG cells were then transduced by culturing for 48 h with different amounts of the filtered lentiviral supernatant. Cells were

then expanded, analyzed and sorted using fluorescent activated cell sorting (FACS) for cells with the highest amount of BFP fluores-

cence starting from transductions with an MOI �0.3. To arrive at pure populations of cells with similar levels of dCas9-KRAB cells

were expanded and sorted 4 times. For the generation of CRISPRa-mediated overexpression cells we used the 2-component

dCas9-SunTag system [citation], a filtered lentiviral supernatant carrying a payload of dCas9-GCN4-BFP (pHRdSV40-dCas9-

10xGCN4_v4-P2A-BFP, Addgene 60903) or scFV-GCN4-GFP-VP64 (pHRdSV40-scFv-GCN4-sfGFP-VP64-GB1-NLS, Addgene

60904) were generated as described above. Glioblastoma cells were simultaneously transduced with dCas9-GCN4-BFP at an

MOI �0.3 and with scFV-GCN4-GFP-VP64 at an MOI �1. Cells were expanded, and FACS sorted a total of 4 times based on

BFP and GFP fluorescence to ensure maximal and similar expression across cells.

Generation of CROP-seq-OPTI gRNA libraries
Protospacer sequences targeting all of the perturbed genes in this study were obtained from the genome-wide human CRISPRi and

CRISPRa version 2 libraries designed by Horlbeck and colleagues.25 Oligonucleotides containing these sequences and flanked with

adapters with homology to a CROP-seq vector that we have previously altered23 to contain a CRIPSRi optimized guide RNA back-

bone90 (CROP-seq-OPTI, Addgene 106280) were synthesized individually for experiments related to Figures 1 and 2 (IDT) and pooled

or as a pooled oligo array (CustomArray Inc. Bothell, WA) for our kinome screen. Specifically, 3,165 sgRNAs targeting 522 kinases,

with five sgRNAs targeting each transcription start site (of which there may be more than one per kinase gene) or non-targeting and

random targeting controls.

5‘ homology sequence:

5’-ATCTTGTGGAAAGGACGAAACACC-3’

30 homology sequence:

50-GGGTTTAAGAGCTATGCTGGAAACAGCATAGCAAGT-3’

Prior to Gibson assembly, pooled oligonucleotides were amplified via PCR using NEBNext 2X Hi-Fi PCR Master Mix (NEB) and

primers:

Forward primer:

50-ATCTTGTGGAAAGGACGAAACACCG’3’

Reverse primer:

50-GCTATGCTGTTTCCAGCATAGCTCTTAAAC-3’

Amplification was followed on a MiniOpticon real-time PCR system (BioRad) with the addition of SYBR green (Invitrogen), and re-

actions stopped prior to saturation. Amplified oligonucleotides were purified using the NucleoSpin PCR clean-up and gel extraction

kit (Takara Bio). CROP-seq-opti was linearized via digestion with BsmBI and alkaline phosphatase (NEB) with PCR clean up in be-

tween both digestions, purified via gel extraction from a 1%agarose gel followed by cleanup using the NucleoSpin PCR clean up and

gel extraction kit (Takara Bio). Linearized CROP-seq-optiI and amplified oligonucleotides were assembled using the NEBuilder HiFi

DNA assembly cloning kit (NEB) with the inserts at 2-fold molar excess followed by multiple transformations into NEB stable compe-

tent E. Coli (NEB) to ensure at least 20x coverage of colonies for every sgRNA, transformations combined and cultured in 50 mL of

Luria broth containing ampicillin at 30�C for 24 h. Plasmid libraries were recovered using a Midi prep kit (Qiagen). Lentiviral libraries

were generated in HEK293T by transfection of plasmid libraries using lipofectamine 2000 (ThermoScientific) in OptiMEM

(ThermoScientific) following the forward transfection protocol provided by the manufacturer scaled up to 15 cm dishes. 72 h

post-transfection, media was collected and filtered using a 50 mL 0.22 mm steriflip filtration system. Viral supernatant was titered

for each cell line (A172, T98G, and U87MG) by transduction with varying amounts of lentiviral supernatant for 72 h in 6-well plates.

After this, cells were split 1:4 into media with and without 1 mg/mL of puromycin, cultured for 96 h, and the approximate MOI calcu-

lated. For our screens, 3 x 106 cells in 10 cm tissue culture dishes were transduced with lentiviral libraries at an approximate MOI of

0.1 to ensure single integrations. 72 h post-transduction cells were transferred to two 15 cm tissue culture dishes containing 1 mg/mL

of puromycin and continuously cultured in puromycin. Cells were seeded for chemical exposure between 10 and 14 days after

transduction.
e3 Cell Genomics 4, 100487, February 14, 2024
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Chemical exposure of genetically perturbed cell pools
Temozolomide (cat no. T2577) and 6-thioguanine (cat no. A4882) were purchased from Sigma and resuspended in DMSO (VWR sci-

entific) to a concentration of 100 mM. Lapatinib (cat no. S2111), nintedanib (cat no. S1010), trametinib (cat no. S2673), and zstk474

(cat no. S1072) were purchased from Selleck Chemicals at a concentration of 10 mM in DMSO. Genetically perturbed pools of glio-

blastoma cells were seeded in 96-well plates at 2.5 x104 cells per well in 100 mL of DMEM containing 10% FBS, 1%P/S, and 1 mg/mL

puromycin and allowed to attach for 24 h. Small molecules were diluted to 1000-fold the exposure concentration in DMSO, followed

by a 10-fold dilution into Dubelcco’s Phosphate buffered saline (DPBS, Life Technologies) and 1 mL added of the appropriate drug

and dose to wells of seeded cells and a final concentration of 0.1% v/v DMSO. For temozolomide and 6-thioguanine exposure ex-

periments, cells were exposed for 96 h. For lapatinib, nintedanib, trametinib and zstk474 experiments, cells were exposed for 72 h.

Sci-Plex cell harvest and hash labeling
Cell harvest and sci-Plex labeling were performed as previously described.13 Briefly, drug-containingmediawas removed fromwells,

wells were washedwith 100 mL of DBPS, and 50 mL of TrypLE (Invitrogen) was added to every well. Cells were detached by incubation

with TrypLE at 37�C. Once cells were detached, 100 mL of ice-cold DMEM was added to every well, cells resuspended, cells trans-

ferred to v-bottom 96 well plates, cells pelleted by centrifugation and washed with ice-cold DPBS. Cells were lysed to nuclei by the

addition of 50 mL of cold lysis buffer (CLB: 10 mM Tris HCl ph 7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% IGE-PAL) containing 1% v/v

Superase-In and 100 nM (final concentration) hashing oligos (each unique to each well) of the form:

50-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-[10bp-barcode]- BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA-3’

Where B is G, C or T (IDT), lysis was carried out on ice for 3 min, followed by the addition of 200 mM of 5% paraformaldehyde (EM

solutions) in 1.25x PBS and incubated on ice for 15 min. Nuclei were then pooled, pelleted by centrifugation, and washed twice with

2 mL of CLB containing Superase-In and 1% v/v of 20 mg/mL molecular grade BSA (NEB). After the final wash, nuclei were resus-

pended in 1 mL of CLB containing Superase-In and 1% v/v of 20 mg/mL molecular grade BSA and snap-frozen in liquid nitrogen.

Labeled nuclei were stored at �80�C until the preparation of sequencing libraries.

Preparation and sequencing of single-cell RNA-seq and CROP-seq-OPTI sgRNA enrichment libraries
Flash-frozen nuclei were thawed at room temperature, nuclei pelleted by centrifugation at 500 x g for 5min, the supernatant removed,

nuclei re-suspended in 1 mL of CLB containing 1% v/v Superase-In and 1% v/v of 20 mg/mL molecular grade BSA (NSB) and nuclei

from uniquely hashed samples were pooled. Pooled nuclei were then pelleted by centrifugation at 500 x g for 5 min. For a subset of

experiments, the same hashes were used for different replicates and/or cell lines. As such, these were not combined and distributed

across unique wells of the plate in which reverse transcription (RT) was performed (e.g., for cells exposed to inhibitors and damaging

agents that alter cell stress pathways each line was hashed separately, and each cell line arrayed across 4 columns of the 96-well RT

plate). Prior to RT, nuclei were further permeabilized by incubation in 0.2% tryton-X100 (Sigma) in NSB. Nuclei were pelleted, resus-

pended in 400 mL of NSB, and sonicated for 12 s using the low setting on a Bioruptor sonicator (Diagenode). Nuclei were then pel-

leted, resuspended in 500 mL NSB, stained with trypan blue (Life Technologies), and counted on a hemocytometer. Nuclei distributed

into skirted lo-bind 96 well plates (Eppendorf) at 20,000 (related to Figures 1 and 2) or 40,000 nuclei per well in 22 mL of NSB and 2 mL

of 10 mM dNTP mix (NEB).

To increase our rate of sgRNA assignment, we devised a sgRNA enrichment strategy specific to combinatorial indexing sci-RNA-

seq that relies on (1) the addition of a custom RT primer targeting the sgRNA-containing puromycin transcript delivered by CROP-

seq, (2) performing combinatorial indexing solely on the i5 end of the mRNA molecule, and (3) addition of a sgRNA enrichment PCR

from the final mRNA library which targets the sgRNA-containing puromycin transcript while maintaining the combinatorial i5 cell bar-

code on every molecule (Figure 1A). We designed the targeted RT primer to capture transcripts derived from CROP-seq-OPTI,23 a

modified version of CROP-seq incorporating an optimized single-guide RNA backbone90 that increases the stability of sgRNA asso-

ciation with dCas9.

For our sci-Plex-GxE protocol, RTwas performed as previously described13 with the addition of 2 mL of 100 mM ligation-compatible

indexed oligo-dT primer of the form:

50-/5Phos/CAGAGCNNNNNNNN-[10bp-barcode]-TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT-30,
Where N is any base (IDT) and 1 mL of 100 mM ligation compatible indexed CROP-seq-OPTI targeting primer of the form.

5’-/5Phos/CAGAGCNNNNNNNN-[10bp-barcode]-ACTTTTTCAAGTTGATAACGGACTAGCCTTATTT-3’

Where N is any base (IDT) that were added to every well. The use of the OPTI-modified backbone necessitated additional consid-

erations for the design of the targeted RT primer to ensure that the hairpin that mediates strong binding to dCas9 does not interfere

with the efficiency of reverse transcription. Primers were annealed by incubation at 55�C for 5 min, followed quickly by incubation on

ice. 14 mL of RT mix (8 mL of Superscript IV buffer, 2 mL of Superscript IV enzyme, 2 mL of 100 mM DTT and 2 mL of RNAseOut rnase

inhibitor, Invitrogen) were added to each well, and RT performed as follows: 4�C - 2 min, 10�C - 2 min, 20�C for 2 min, 30�C for 2 min,

40�C for 2min, 50�C for 2min and 55�C for 15min. After RT, 60 mL of CLB containing 1%v/v of 20mg/mLmolecular grade BSA (NBB)

were added to every well, wells pooled, nuclei pelleted, resuspended in NSB and 10 mL of nuclei were redistributed into eachwell of a

96 well Lo-bind skirted plates. All experiments were done using a single RT and ligation plate with the exception of the kinome screen

where 4 RT and 4 ligation plates were used. For the second round of combinatorial indexing, 8 mL of indexed ligation primer of

the form.
Cell Genomics 4, 100487, February 14, 2024 e4



Technology
ll

OPEN ACCESS
50-GCTCTG[9bp-or-10bp-barcode-A]/ideoxyU/ACGACGCTCTTCCGATCT[reverse-complement-of barcode-A]-3’

(IDT) were added to each well, followed by the addition of 22 mL of ligation mix (20 mL quick ligase buffer and 2 mL of quick ligase,

NEB) and incubation at 25�C for 10 min. After ligation 60 mL of NBB were added to each well, wells pooled, nuclei pelleted by centri-

fugation at 700 x g for 10min, washed twice with NBB, nuclei counted, and redistributed into 96 well Lo-bind skirted plates. The num-

ber of cells distributed was determined by the number of RT and ligation barcodes in the experiment so as to minimize the number of

total doublets in the experiment to between 1 and 10% and the rate of doublets that cannot be filtered from sci-Plex hashes to 1% or

less according to birthday problem statistics.91 Plates were stored at �80�C until further processing. Second strand synthesis was

performed after thawing by the addition of 5 mL of second strand synthesis mix (3 mL of elution buffer [Qiagen], 1.33 mLmRNA second

strand synthesis buffer and 0.66 mL of second strand synthesis enzymemix [NEB]) and incubated at 16�C for 3 h. After second strand

synthesis, DNA was tagmented by the addition of 10 mL of tagmentation mix (0.01 mL of a custom TDE1 enzyme in 9.99 mL of 2x Nex-

terda TD buffer, Illumina) and plates incubated at 55�C for 5min. After tagmentation, 20 mL of DNAbinding buffer (Zymo) was added to

each well and incubated at room temperature for 20min, 40 mL of Ampure XP beads (Beckman Coulter) was added to every well, and

a cleanupwas performed according tomanufacturer’s instructionswith changes to the elution step. Prior to elution, beadswere incu-

bated with 10 mL of USERmix (1 mL of 10X USER buffer and 1 mL of USER enzyme in 8 mL of nuclease-free water, NEB) and incubated

at 37�C for 15 min. After incubation, 7 mL of elution buffer was added to each well, beads were resuspended, plates were placed on a

magnetic stand and 16 mL of solution was transferred to 96 well Lo-bind skirted plates. For PCR, 20 mL of 2X NEBNext master mix,

2 mL of 10 mM indexed P5 primer of the form:

50-AATGATACGGCGACCACCGAGATCTACAC-[index5]-ACACTCTTTCCCTACACGACGCTCTTCCGATCT-30

and 2 mL of 10 mM indexed P7 primer of the form:

50-CAAGCAGAAGACGGCATACGAGAT-[index7]-GTCTCGTGGGCTCGG-30

were added to each well. To account for the loss of the P7 index during sgRNA enrichment PCR, each PCR plate was labeled with

96 unique P5 indices, and the P7 index was used as a plate identifier. Libraries were generated using the following PCR program:

72�C for 5 min, 98�C for 30 s, 15 cycles of (98�C for 10 s, 66�C for 30 s, 72�C for 30 s), and a final extension at 72C for 5 min. After

PCR, uniquely labeled wells were pooled, and 1 mL of PCR product was subjected to a 0.7X Ampure cleanup. After the initial incu-

bation, the supernatant was transferred to a new tube, and additional beads were added to arrive at a 1X Ampure cleanup which will

be the hash-containing fraction. Both fractions were further processed following the standard Ampure XP protocol and eluted in

100 mL of elution buffer.

For the enrichment of sgRNA containing library fragments, a separate sgRNA enrichment PCR was performed via nested PCR

using the final sci-RNA-seq3 libraries as starting material. For each library, 10–20 unique reactions were performed each using

1:100th of the mRNA library in a reaction containing 25 mL of 2X NEBNext master mix an up-stream U6 targeting forward primer

of the form 50-CTTGTGGAAAGGACGAAACACCG-30, a reverse primer targeting the P5 flow cell binding sequence (50-AATGA

TACGGCGACCACCGA-30), 0.5 mL of SYBR green (Life Technologies) and nuclease-free water. Amplification was monitored by

real-time PCR (BioRad), PCR terminated during the extension phase just prior to saturation, PCR was purified using a 1X Ampure

XP cleanup, and eluted into 50 mL. A second PCR reaction was performed as described above with the following forward

primer targeting the sgRNA proximal U6 promoter and containing an Illumina read 2 primers binding sequence (50- GTCT

CGTGGGCTCGGAGATGTGTATAAGAGACAGCTTGTGGAAAGGACGAAACACCG-30) and reverse primer targeting the P5 flow

cell binding sequence followed by a 1X Ampure cleanup. Finally, a third PCR was performed using a P7 index as above that could

be used to link an mRNA library to its corresponding sgRNA enrichment library and the reverse primer targeting the P5 flow cell bind-

ing sequence followed by a 1X Ampure cleanup.

Library fragment sizeswere determined using an Agilent TapeStation high sensitivity screen tape (Agilent) and library concentration

determined using a Qubit fluorometer (Life Technologies). Libraries were sequenced on the NextSeq 550 (R1: 34 bp, R2: 100 bp,

I1: 10 bp, I2: 10 bp), Nextseq 2000 (R1: 34 bp, R2: 70 bp, I1: 10 bp, I2: 10 bp) and Novaseq (R1: 34 bp, R2: 100 bp, I1: 10 bp,

I2: 10 bp) platforms.

Data processing and generation of count data matrix
Sequences were demultiplexed using bcl2fastq (Illumina) filtering for reads with RT and ligation barcodes within an edit distance of

2 bp. PolyA tails were trimmed using trim-galore (https://github.com/FelixKrueger/TrimGalore) and reads weremapped to the human

hg-38 transcriptome using STAR.92 After alignment, reads were filtered by alignment quality and duplicates were removed if they

mapped to the same gene, the same barcode and the same unique molecular identifier (UMI) or if they met the first 2 criteria and

the UMI was within an edit distance of 1 bp. Reads were assigned to genes using bedtools.93 30 UTRs were extended by 100 bp

in the gene model to account for short 30 UTR annotations to minimize genic reads labeled as intergenic. A knee plot was used to

set a threshold above which a combinatorial cell barcode confidently corresponded to a cell. UMI counts for cell barcodes that

pass this threshold were aggregated into a sparse matrix format, followed by the creation of a cell dataset object using Monocle3.

Mitochrondrially encoded genes were excluded in downstream analyses.

Hash and sgRNA assignment
sci-Plex hashes and sgRNA containing puromycin transcripts derived from CROP-seq were isolated from demultiplexed reads.

Hashes were assigned as previously described.13 Briefly, reads were considered hashes if (1) the first 10 bp of read 2 matched a
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hash in a hash whitelist within a hamming distance of 2 and (2) contained a poly A stratched spanning the 12–16 base pair region of

read 2. For sgRNA assignment, readwere consideredCROP-seq derived if the bases spanning position 24–42matched a sgRNA in a

sgRNA whitelist within a hamming distance of 2 and (2) a TGTGG sequence at position 3–7 of read 2. Duplicated reads were

collapsed by their UMIs arriving at hash and sgRNA UMI counts for each nucleus in our experiment. Finally, we tested whether a

particular nucleus was enriched for one or more hash or sgRNA as described in13 for sci-Plex hashes.

Data pre-processing
For our kinome screen, multiplets were removed from our experiments using 3 orthogonal approaches. First, doublets were inferred

using scrublet94 specifying an expected doublet rate of 0.05 as calculated using a formulation of the birthday problem. Cells with a

doublet score of larger or equal to 0.25 were removed from our dataset (0.88% of cells). Next cells where the ratio between the UMI

counts of the most abundant and next most abundant hash (i.e., the top to second best ratio) was less than 2.5 or cells with less than

5 totals hash UMIs were removed from our analysis (4.9% of cells). Data were pre-processed by performing an initial dimensionality

reduction using principal component analysis (PCA) using genes expressed in at least 5% of the cells from each cell line as feature

genes and the top 25 dimensions were used to build our UMAP.We specified 20 nearest neighbors and aminimum distance of 0.1 as

UMAP hyperparameters. We next clustered cells in this co-embedding using Leiden community detection95 specifying a resolution

parameter of 1e�6. This resulted in 5 UMAP partitions that could be readily assigned to the 3 cell lines in our experiment by visual

inspection. This approach identified a small proportion of cells where there was a mismatch between hash and transcriptome iden-

tity. For our GSC and chemical exposure experiments, multiplets were described as above without scrublet pre-filtering. For our

proof-of-concept experiments in A172 cells, multiplets were removed using the hash filters described above.

Estimation of the cell cycle stage of single-cells
Estimates for the cell cycle stage of individual cells was inferred as in.13 Briefly, the expression of genes associated with the G1/S and

G2/M cell cycle stages was size-factor normalized,90 and their expressions aggregated and log-transformed. We define a prolifer-

ation index as the sum of the logged G1/S and G2/M scores.

Differential gene expression analysis
Differential gene expression analysis was performed using the fit_models function in Monocle3.

To define the effect of drug exposure on the gene expression profiles of unperturbed cells, we created subsets of our dataset for

every exposure and set of NTC cells. We first log transformed gene expression values after the addition of a pseudocount of 1. For

every gene expressed in at least 5% of cells, we fit a generalized linear model with a quasi-poisson random component of the form

expression� log(dose + pseudocount) specifying ‘‘�log(dose +0.001)’’ for the model_formula_str parameter in fit_models. TheWald

test was applied to determine whether the coefficients from our model are significantly non-zero We then combined all tests for all

genotypes and doses and p values from theWald tests were corrected for multiple hypothesis testing using the Benjamini-Hochberg

false discovery rate method. We chose a pseudocount of 0.001 to preserve the relationship to a dose with minimal effect on cells

based on preliminary experiments (data not shown).

For experiments where we exposed perturbed A172 cells to temozolomide, we created subsets of our dataset for every dose of te-

mozolomide and every pairwise combination of a target and NTC cells. Gene expression valueswere log-transformed after the addition

of a pseudocount of 1. For all expressed genes in at least 5% of cells, we fit a generalized linear model with a quasi-poisson random

component of the form expression� genotype specifying ‘‘� gene_id’’ for themodel_formula_str parameter in fit_models. TheWald test

was applied to determine whether the coefficients from our model are significantly non-zero. We then combined all tests for all geno-

types and doses and corrected for multiple hypothesis testing using the Benjamini-Hochberg false discovery rate method.

To identify significant interaction effects of proliferative gene expression between a drug and specific kinase perturbations, we

modeled our proliferation index score as a function of drug, dose, genotype, and their interaction using generalized linear models

with a Gaussian random component of the form proliferation index � log(dose) + genotype + genotype:log(dose) + replicate) using

the speedglm function of the speedglm package in R. For all coefficients, p values from aWald test were subject to multiple hypoth-

esis testing using the Benjamini Hochberg false discovery rate method.

Gene set analysis
Gene set enrichment analysis was performed using the piano R package.96 The hallmarks and oncogenic signatures57,97 gene sets

were obtained from the Broad Institute’s Molecular Signatures Database.56 Hypergeometric testing was performed using feature

genes as the foreground and all genes as the background.

UMAP embedding of knockdown proportions
We used UMAP to visualize the relationship between genotypes and the proportion of temozolomide and perturbation-induced

cellular states. We performed an initial dimensionality reduction using PCA returning the top 25 principal components using the union

of all differentially expressed genes as a function of genotype as feature genes. Genes that were differentially expressed between

negative controls and NTC cells were removed from the analysis. We then performed dimensionality reduction using UMAP, spec-

ifying 20 nearest neighbors and a minimum distance of 0.1 as hyper-parameters. We clustered cells within the UMAP embedding
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using Leiden community detection.95 We next calculated the frequency of cells for each gRNA or genotype across clusters and used

these matrices to initialize a UMAP embedding.

Median kinase knockdown
We assessed the quality of our gRNA assignments in our kinome screen by examining the median knockdown level across all per-

turbed kinases in our experiment. We calculated the mean expression levels for each kinase in NTC cells and their respective per-

turbed target cells at varying gRNA read cutoffs (i.e., 1–10 gRNA reads per cell). We ensured that our knockdown estimates were not

biased due to the zero inflation of sc-RNA-seq data and the larger proportion of NTC cells in our experiment by permuting the gRNA-

defined target labels and re-calculating mean kinase knockdown. We then compared the distribution of knockdown levels between

our gRNA assigned and permuted data using the non-parametric two-sample Wilcoxon test.

Enrichment and depletion of knockdowns
We assessed the relative enrichment and depletion of kinases in our experiment by comparing the frequency of gRNAs targeting a

particular kinase in our final dataset to its frequency in the plasmid library used to create gRNA-delivering lentiviral particles. We

defined the relative proportion of gRNA against a kinase target as the mean-centered log of the ratio of the two frequencies.

Identifying conserved responses to RTK pathway inhibition
We determined conservation in response to RTK pathway inhibition by comparing the dynamics of differential gene expression of

unperturbed A172, T98G, and U87MG cells. The mean expression in NTC cells of differentially expressed genes as a function of la-

patinib, nintedanib, trametinib, and zstk474 exposure was clustered for each cell line individually by hierarchical clustering.We chose

k = 6 as the number of clusters for each cell line by visual inspection of dendrograms across all cell lines. We then calculated the

Jaccard coefficient for every pairwise comparison of clusters across all 3 cell lines. Clusters with a Jaccard coefficient over 0.1

were collapsed into conserved super-clusters by taking the union of the genes across similar clusters.

Chemical genomic validation of kinases whose loss leads to changes in the induction of the compensatory adaptive
program
To validate the contribution of kinase hits to the induction of the compensatory adaptive program, we exposed A172, T98G and

U87MG to one of 23 compounds (alectinib, AZ628, AZD7762, BID1870, BMS-345541, DDR1IN, doxorubicin, GSK690693, infigrati-

nib, KU-55933, MK-2206, nintedanib, palbociclib, PHA-767491, RIPA-56, roscovitine, salubrinal, temozolomide, temsirolimus, tra-

metinib, VE-821, volasertib) in the absence or presence of trametinib, the strongest inducer of the adaptive compensatory program.

Cells were exposed to 0.01, 0.1, 1, and 10 mM doses of each compound, the absence or presence of 0.01, 0.1, 1 and 10 mM of tra-

metinib or DMSO vehicle control. For trametinib co-exposure conditions, the concentrations were matched for each compound and

trametinib (e.g., 1 mM of compound +1 mM trametinib). The concentration of DMSO control was set to 0.2% v/v across all single and

combinatorial exposures. Cells were exposed to compounds for 72 h, harvested, multiplexed using our previous sci-Plex protocol,13

and nuclear mRNA libraries were generated and sequenced as described above.

Correlation of single and combinatorial chemical targeting to the effect induced by trametinib exposure
For our validation chemical genomic experiment, we performed differential expression analysis using quasipoisson regression for

the effect of each compound alone or in combination with trametinib on the set of genes that compose the compensatory

adaptive program. For each cell line, we fit a generalized linearmodel with a quasi-poisson randomcomponent of the form expression

� log(dose + 0.001) + replicate.

For single chemical exposures, we focused on treatments that led to significant changes in the expression of at least 100 genes of

the program (FDR <5% and a normalized beta coefficient for the dose term of |bcoef| > 0.05) across two or more cell lines. We calcu-

lated the pairwise Pearson’s correlation across all exposures on a matrix of the normalized b coefficients for the dose term across all

feature genes. We defined compound exposures with a significant correlation to the effect induced by trametinib exposure as those

with a Pearson’s ⍴ > ± 0.2 at an FDR <5%.

For both single and combinatorial exposures, we also broadly examined the correlation structure across exposures. We regressed

the effect of cell line background for each correlation matrix using the monocle3 function align_cds specifying a residual_model_for-

mula_str of ‘‘cell_line’’. We used Leiden-based community detection as implemented in the cluster_cells function of monocle3 on this

corrected correlation matrix to identify groups of exposures that lead to similar transcriptional changes across genes that make up

the compensatory adaptive transcriptional program. To visualize our results, we used this corrected correlation matrix to initialize a

UMAP embedding using the reduce_dimension function of monocle3 specifying umap.n_neighbors of 5 and a umap.min_dist of 0.15.

QUANTIFICATION AND STATISTICAL ANALYSIS

Calculation of pairwise angular distance
To detect the effect of a genetic perturbation on a drug-induced transcriptional program we calculated the pairwise angular distance

of every cell to the average profile of non-targethe ting cells exposed to the highest dose of each drug. The angular distance between
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two cells was calculated as the arc cosine transcriptome distance between the norm of the expression vector for each cell over a set

of feature genes such that

if V is the expression vector of a cell across x gene expression values, then the norm of the vector is defined as,

kVk =
ffiffiffiffiffiffiffiffi

Sx2
p

and the angular distance between the vector norms for two cells is,

angular distance = 2=p � arccosine½ðVcell1 3 Vcell2ÞO ðkVcell1k 3 kVcell2kÞ�
For all angular distance calculations in perturbed cells the comparisons were made between every cell (perturbed and unper-

turbed) vs. the mean profile of NTC cells exposed to the highest dose of each drug. We compared this approach to the use of the

more common Jensen-Shannon distancemetric, observing good agreement between both distancemetrics (Figure S3G). Therefore,

we chose to continue with angular distance, which is a less expensive calculation, for our measure of similarity to unperturbed cells.

Inference of the relative transcriptional effective concentration 50 (TC50)
First, we fit a 4-parameter log-logistic dose-responsemodel to the relationship between the pairwise angular distance for all cells and

at a dose of temozolomide for NTC control cells using the drc Rpackage.98We specified a formula of angular distance� dose and the

function as LL.4 in the drm function. We then estimated the effective dose 50, which we term our transcriptional effective concen-

tration 50 (TC50) using the ED function of the drc package. To infer the TC50 for all other genotypes, we performed the following

across 1,000 bootstraps of 75% of our dataset. For each genotype, we fit a linear model to the relationship between the log of

the angular distance to NTC across bootstrapped subsets of cells vs. the log of the dose of temozolomide. We then extracted the

coefficients of those fits to determine the concentration at which cells reached the pairwise angular distance to NTC that NTC cells

achieved at their TC50. To determine the robustness of our approach to the number of cells per genotype, we repeated this proced-

ure using subsamples of 10, 20 and 50% of our dataset.
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