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Highlights
Regression models offer a simple yet
powerful framework for integrating sin-
gle-cell transcriptomic, genetic, and
epigenetic data to identify mechan-
isms of gene regulation.

New protocols for CRISPR loss-of-
function screens read out gene
expression and genetic perturbations
in the same single cells. Regressing
expression (phenotype) versus geno-
type can provide insights into gene
function and epistasis.

Antibodies conjugated to barcoded
oligonucleotides have been used to
read out gene expression and protein
epitope abundance in the same single
cells. Regression modeling of such
data may facilitate the reconstruction
of cell signaling networks.

Emerging single-cell ATAC-seq tech-
nologies measure chromatin accessi-
bility in single cells and can facilitate the
identification of noncoding DNA ele-
ments, sequence features, and tran-
scription factors that drive gene
expression dynamics.
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Cells in a multicellular organism fulfill specific functions by enacting cell-type-
specific programs of gene regulation. Single-cell RNA sequencing technologies
have provided a transformative view of cell-type-specific gene expression, the
output of cell-type-specific gene regulatory programs. This review discusses
new single-cell genomic technologies that complement single-cell RNA
sequencing by providing additional readouts of cellular state beyond the tran-
scriptome. We highlight regression models as a simple yet powerful approach
to relate gene expression to other aspects of cellular state, and in doing so, gain
insights into the biochemical mechanisms that are necessary to produce a
given gene expression output.

Successes and Limitations of sc-RNA-Seq and Pseudotemporal Analysis
Single-cell RNA sequencing (sc-RNA-seq) methods have allowed biologists to produce
‘molecular atlases’ of gene expression [1–19] that comprehensively catalog the repertoire
of cell types present in a tissue, or even in a whole organism. These atlases have given us an
unprecedented view into what each cell in an organism is doing at a given time. But the question
of why a cell adopted one state and not another is difficult to answer with sc-RNA-seq alone.
This review discusses new experimental methods that complement sc-RNA-seq by providing
readouts of additional aspects of cellular state beyond the transcriptome and analytical
methods that use this ‘multi-omic’ data to try to identify causal factors that regulate cell-state
dynamics. Most of these methods are still in a proof-of-concept stage, needing additional
technical development before being suitable for wider use. We therefore focus less on the
biological settings the methods have been applied to and more on how the data from each
method, in theory, might fit into a statistical model of gene regulation.

The idea of using single-cell data to gain insights into gene regulation precedes the development of
multi-omic methods. In 2014, two software packages, Monocle [20] and Wanderlust [21],
independently introduced the concept of ‘pseudotemporal analysis’, in which sc-RNA-seq data
are collected for a population of cells undergoing a dynamic biological process and then
computationally ordered into a trajectory that reflects the continuous changes in gene expression
that occur from the beginning to the end of the process. Pseudotime trajectories allow one to
identify genes that exhibit differential expression (DE; see Glossary) over the course of the
biological process and cluster them based on their expression dynamics (i.e., genes with
increasing, decreasing, or transient expression patterns). Identifying DE genes with a known
regulatory function, such as transcription factors (TFs), can help prioritize follow-up experiments.
For example, the original Monocle paper [20] identified candidate regulators of myogenesis based
on pseudotime DE gene analysis and validated these candidates using RNAi.

Pseudotemporal analysis has been refined by methods including Monocle 2 [22], DPT [23],
Wishbone [24], SLICER [25], and URD [18] that allow one to infer branches in pseudotime.
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Glossary
Accessible chromatin: DNA that is
not wrapped around a nucleosome.
ATAC-seq: assay for transposase
accessible chromatin using
sequencing.
ChIP-seq: Chromatin
immunoprecipitation followed by
sequencing. Used to map
transcription factor binding sites or
histone modification domains.
CRISPRi: a method for
epigenetically repressing a target
gene using a nuclease-deficient Cas9
protein fused to a transcriptionally
repressing KRAB domain.
CRISPR-induced indel: a sequence
insertion or deletion introduced at a
target locus using a CRISPR/Cas9
system. Cas9 protein cuts DNA to
make a double-strand break, which
is repaired by non-homologous end
joining, often introducing indels.
CUT&RUN: cleavage under targets
and releasing using nuclease. An
alternative to ChIP-seq that requires
substantially less input material and
sequencing depth.
Differential expression: a
statistically significant different in the
abundance of a given RNA between
one or more datasets.
DNase-seq: uses chromatin
digestion with DNase I followed by
sequencing to identify DNase
hypersensitive sites, which
correspond to regions of accessible
chromatin.
DPT: a pseudotime analysis method
that uses diffusion maps for
dimensionality reduction of sc-RNA-
seq data.
Gene ontology enrichment
analysis: a statistical test to identify
gene ontology terms that are
associated with a larger proportion of
a query set of genes the would be
expected due to chance.
MNase digestion: cutting DNA into
small fragments using micrococcal
nuclease (MNase), which has higher
specificity for non-nucleosomal DNA
than DNase I.
Monocle 2: a software package for
single-cell analysis in the R
programming language. Includes an
implementation of sc-RNA-seq
pseudotime analysis that is based on
the dimensionality reduction
algorithm ‘DDRTree’.
Nested effects models: regression
models that assume that data points
Branches in pseudotime correspond to ‘decision points’ in which a cell decides to progress
toward one or two mutually exclusive fates. Branched pseudotime inference has been
successfully applied to complex biological processes such as hematopoietic development
[22] and zebrafish embryogenesis [18]. Methods such as Waddington-OT [26], RNA velocity
analysis [27], topological data analysis [28], and Monocle 3 generalize pseudotime even further
to support modeling trajectories in which cells may cycle through recurrent intermediate states
before terminally differentiating.

The main limitation of pseudotemporal analysis of sc-RNA-seq data lies in the difficulty in
identifying the causal factors that push a cell toward one lineage on a trajectory versus another.
A fate decision may correlate with the expression of many lineage-specific TFs, making the
relative importance of these factors unclear. Moreover, the expression of lineage-specific TFs is
often not sufficient to establish a robust differentiation process. Experiments with direct
reprogramming of fibroblasts to other lineages [29–32] have shown that to achieve efficient
reprogramming, a suitable cell signaling context is necessary to potentiate the effects of
lineage-specific TFs. When we apply sc-RNA-seq and pseudotime analysis to in vivo systems,
we can observe the result of a cell’s gene regulatory network transducing signals from its
environment: the cell appears to traverse a smooth gradient of gene expression that has been
compared to the ‘epigenetic gradient’ of Waddington’s landscape [26,27]. But we do not
directly observe the structure of the gene regulatory network, or the set of signals the cell has
received.

The promise of single-cell multi-omic assays is that by modeling the statistical relationships
between different aspects of a cell’s genetic and epigenetic states, we will be able to confirm
specific causal factors that regulate the cell fate decisions that one can see in a pseudotime
trajectory. We discuss four main families of assays. CRISPR knockout screens measure the
impact of gene loss of function (LoF) on gene expression and enable the mapping of gene
regulatory networks. Methods for paired quantitation of protein epitopes and RNAs allow one to
correlate the state of cell signaling proteins with gene expression. Single-cell ATAC-seq
measures chromatin accessibility, and when this information is integrated with transcriptomic
data and sequence analysis, it can identify DNA elements important for cis-regulation. Lastly,
single-molecule fluorescence in situ hybridization (FISH) and related methods can put gene
expression in context of spatial position within a tissue section.

In our discussion of these four families of multi-omic assays, we emphasize statistical
regression as a simple yet powerful means to integrate the diverse data types they produce
into quantitative models of gene regulation. The approach of directly regressing multiple
readouts of cellular state against each other is made possible by the enormous sample size
of single-cell assays, in which every cell provides an independent observation of the state of a
gene regulatory network. We anticipate that the engine of statistical regression, fueled by
single-cell multi-omic data, will in the coming years enable the construction of comprehensive
models of regulatory interactions between genes, proteins, noncoding DNA elements, and cell
communities.

Outlining the Architecture of Signaling Pathways with CRISPR Screens
In development, signaling pathways such as BMP/TGF-b, Wnt, Notch, and Hedgehog are
used pleiotropically across tissues and lineages to regulate cell fate decisions. These pleiotropic
capabilities were highlighted by Loh et al. [33], who used sequential combinations of activation
and inhibition of BMP, Wnt, and Notch signaling to differentiate human pluripotent stem cells
into 12 mesodermal lineages. The competency of a cell to enact a lineage-specific response to
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are generated by a hierarchical
process.
Pseudotime trajectory: a
computational ordering of cells from
a single-cell assay (i.e., sc-RNA-seq)
that aims to reconstruct the
continuous temporal dynamics of a
gene regulatory process.
RNA FISH: RNA fluorescence in situ
hybridization. Fluorophore-
conjugated oligonucleotide probes
are hybridized to mRNA molecules in
a fixed sample, allowing them to be
counted.
RNAi: a biological pathway present
in many eukaryotes in which short
hairpin RNAs or short double-
stranded RNAs trigger degradation
and/or translational inhibition of
complementary mRNA.
RNA velocity: an algorithm that
analyzes the ratios of spliced mRNA
to un-spliced pre-mRNAs in single-
cell RNA-seq data to estimate the
time derivative of cell gene
expression profiles, that is, a cell’s
‘RNA velocity’.
Single-cell ATAC-seq: one of
several protocols that adapt ATAC-
seq to provide chromatin
accessibility data for individual cells
instead of a bulk cell population.
Single-cell bisulfate sequencing:
one of several protocols that adapt
bisulfate sequencing to profile CpG
methylation in single cells. Bisulfate
sequencing uses a chemical reaction
to convert non-methylated cytosine
nucleotides to uracil, which is read
out as thymine when sequenced.
Single-cell THS-seq: an adaptation
of the THS-seq protocol that
provides chromatin accessibility data
for individual cells instead of a bulk
cell population.
SLICER: an algorithm for
pseudotemporal analysis that
examines shortest paths on a k-
nearest-neighbor graph of cells.
THS-seq: transposome
hypersensitive site sequencing. An
alternative to ATAC-seq that uses in
vitro transcription to amplify
sequence from regions of accessible
chromatin.
URD: an algorithm for
pseudotemporal analysis. Similar to
DPT, but supports reconstructing
trajectories with multiple branches.
Waddington’s landscape: a
metaphor to describe the process of
a ubiquitously used signaling pathway is established by a variety of factors. A cell could, for
example, express a specific subset of a family of related receptor proteins [34]; express lineage-
specific TFs that physically interact with signal transducing transcriptional cofactors [35]; or
restrict nuclear receptor binding to specific genomic locations that have a pre-accessible
chromatin state [36,37].

The most straightforward way to show that a gene has a causal role in making a cell competent
to respond to a signal, drug, or other perturbation is to show that loss of gene function (LoF)
results in an abnormal response. This basic principle can be scaled to screen almost every gene
in a genome using RNAi [38], a CRISPR-induced indel [39], or CRISPR-mediated epigenetic
repression (CRISPRi) [40,41]. A caveat to these methods is that they do not produce complete
LoF phenotypes. CRISPR will only make loss of function edits on both alleles in a minority of
cells; and with RNAi and CRISPRi, gene expression is knocked down with variable efficiency.
Even the phenotype of a bona fide loss of function mutant can be variable due to incomplete
penetrance. A high-throughput LoF screen is only interpretable if paired with a statistical model
to assess the significance of a putative LoF phenotype.

Until recently, most large-scale LoF screens involved measuring a single quantitative metric, for
example, the amount of fluorescence from a reporter gene or the fold change in cell count after
a drug selection. A natural way to model such data is a regression model in which the
quantitative phenotype is a linear function of the ‘genotype’ (which genes are knocked
down/out in an experiment or in a single cell). LoF in a gene can be considered to have a
significant effect on the phenotype if the regression coefficient for that gene is significantly
different from zero.

Recently, CRISPR LoF screens have been paired with sc-RNA-seq to give a multivariate,
transcriptomic readout [41–45]. The data produced by these methods can also be interpreted
using a phenotype � genotype regression model (Figure 1A). In this model, the response is a
matrix: rows correspond to cells in the experiment, columns correspond to genes, and the
entries in the matrix are log counts of number of mRNA molecules observed for a given gene in a
given cell. Correspondingly, there is now a matrix of regression coefficients: each coefficient bij

represents the effect of LoF in gene j on the expression of gene i. A coefficient bij < 0 indicates
non-functional gene j results in reduced expression of gene i and therefore suggests that gene j
has a role in activating gene i. A coefficient bij > 0 suggests that gene j inhibits gene i.

Several methods for analyzing CRISPR LoF sc-RNA-seq data were recently developed by Dixit
et al. [42], who applied them to investigate the role of TFs in bone marrow dendritic cell
response to lipopolysaccharide stimulation. After setting up a phenotype � genotype regres-
sion model as described above, hierarchical clustering was applied to the regression coefficient
matrix. Clustering identified ‘modules’ of TFs with similar LoF phenotypes, and modules of
coregulated target genes, that they associated with biological pathways using Gene Ontology
enrichment analysis [46]. This allowed the results of the experiment to be intuitively summa-
rized as a graph of activation and inhibition relationships between TF modules and target gene
modules.

CRISPR LoF screens in which two or more genes per cell are knocked out could potentially
allow one to identify and quantify genetic interactions. A phenotype � genotype regression
model could include interaction terms between genotype terms. Interaction terms could be
used to identify genes that are part of a common pathway (interaction term < 0, indicating that
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development introduced by Conrad
Waddington in 1957.
Waddington-OT: an algorithm for
identifying lineage relationships
between cells in time series single-
cell RNA-seq data.
Wishbone: an algorithm for
pseudotemporal analysis that
examines shortest paths on a k-
nearest-neighbor graph of cells.
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Figure 1. Regression Modeling for CRISPR Loss of Function Screens. (A) A simplified version of the regression
model of Dixit et al. [42] for analyzing clustered regularly interspaced short palindromic repeats (CRISPR) loss of function
(LoF) screen data with a single-cell RNA-seq readout. Gene expression, measured by log counts of unique molecular
identifiers (UMIs) constitutes a cell’s phenotype, while observations of which single guide RNAs (sgRNAs) were received by
each cell serve as a proxy for the cell’s genotype of CRISPR edits. The regression coefficient matrix b represents the effects
of LoF in the sgRNA target genes on downstream gene expression. The model is fit using LASSO (l1-regularized)
regression, which encourages the coefficient matrix to be sparse (containing only a limited number of non-zero entries).
In practice, the genotype and regression coefficient matrices are typically augmented with columns for experimental
covariates, such as a biological replicate id, and cell-specific covariates, such as cell cycle status. Another potential
adjustment to the model is to first cluster cells using a dimensionality reduction technique such as t-stochastic neighbor
embedding and then simplify the phenotype matrix to encode the assignment of cells to clusters instead of full gene
expression profiles. (B) Schematic of the CROP-seq [45] vector, which avoids the barcode swapping problem encoun-
tered by most other CRISPR screen vectors. The sgRNA is transcribed by RNA Pol III from a U6 promoter. The U6
promoter and sgRNA are placed within the 30 untranslated region of a puromycin resistance gene, which is transcribed by
RNA Pol II from an EF-1a promoter. This mRNA is recovered by sc-RNA-seq, allowing the set of sgRNAs received by each
cell to be recorded. This is only a proxy for the cell’s true genotype however, as Cas9 is not guaranteed to make a LoF edit
on both alleles of a target site. (C) Interpretation of the regression coefficients. If LoF in gene X decreases expression of
gene Y, then functional gene X activates gene Y, and vice versa.
the combined effect is less than the sum of the individual effects), or genes that have redundant
functions (individual effects �= 0 but interaction term > 0).

Several published combinatorial CRISPR screens have identified synthetic lethal genetic
interactions by measuring changes of synthetic guide RNA (sgRNA) barcode abundances
before and after a cell population is expanded in culture, often in the context of a drug selection
[47–50]. The exponential nature of cell growth allows even small changes of cellular fitness to
result in significant differences in sgRNA barcode abundances. In principle, single-cell CRISPR
screens performed at large enough scale could be used to test all pairwise or even higher-order
mutants from a library of candidate genes, potentially even without a phenotypic selection.
Realizing this goal will require further improvements to the technique.

Accurately genotyping each cell is crucial to assessing the effect of mutations on molecular
phenotype. In most published methods for CRISPR LoF screens with a sc-RNA-seq readout,
sgRNAs are expressed on a plasmid from one promoter, and a barcode linked to the sgRNA
during cloning is expressed from a different promoter as part of an mRNA. However, it was
found that recombination between the sgRNA and the barcode can break the genotype-to-
phenotype linkage, reducing statistical power [51]. One protocol, CROP-seq [45], avoids this
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problem by expressing the sgRNA from a promoter placed within the untranslated region of an
mRNA (Figure 1B), allowing it to be read out directly in sc-RNA-seq data. However, CROP-
seq’s design precludes the vector from coexpressing multiple sgRNAs, which may constrain
screens of higher-order combinations of mutations.

Another problem is CRISPR cuts that do not always result in gene LoF. Suppose the probability
of an edit causing LoF on one allele is p = 2/3 and a cell receives a sgRNA for two genes. The cell
will be recorded as having a LoF genotype for both genes, but the chance that the cell will
actually get a homozygous knockout for both genes is only p4 � 20%. There is also a
2p2(1 � p)2 + 4p(1 � p)3 + (1 � p)4 = 21% chance that the cell will have no LoF alleles for at
least one of the two targeted genes. One study [42] used an expectation-maximization
procedure to try to impute which cells got LoF edits versus non-LoF edits. While this procedure
was successful in increasing their signal-to-noise ratio, it may lead to over-estimated regression
coefficients in a scenario where a bona fide LoF has incomplete penetrance. Optimized sgRNA
libraries for CRISPRi [52] may offer a solution to this problem by producing more reliable LoF
than CRISPR cuts. However, to our knowledge, a head-to-head comparison of CRISPRi
versus CRISPR cut has not yet been published.

Paired Protein and Transcriptomic Readouts Using Antibody-Conjugated
Oligos
Gene regulatory networks are mediated by the proteins those genes encode. Proteomic methods
that give a readout of protein abundance and state (i.e., the abundance of phosphorylated
epitopes) can give key insights into the biochemical mechanisms that underlie the statistical
properties of a gene regulatory network. For example, mass cytometry [53], a system that
combines antibody labeling with mass spectrometry to enable protein epitope quantification in
single cells, has been leveraged to perform de novo statistical inference of signaling pathway
architecture [54,55]. Systems based on mass spectrometry however require a different experi-
mental apparatus and technical skill-set from those based on DNA sequencing, which has
impeded the integration of genomic and proteomic methods. To work around this technical
gap, several groups have developed assays to quantify protein epitope abundances in single cells
using DNA sequencing, and in tandem quantify RNA abundances for the same single cells.

In CITE-seq [56] and REAP-seq [57], antibodies are conjugated to single-stranded oligonu-
cleotides (oligos) that contain a barcode for the antibody. These oligos are then reverse
transcribed as part of standard sc-RNA-seq protocols, allowing antibody barcodes to be
quantified as part of a transcriptomic readout. While these methods could potentially be used to
quantify phospho-epitopes, the CITE-seq and REAP-seq papers did not directly demonstrate
the capability. A similar antibody-conjugated-oligo system, ID-seq, was developed and used to
profile the effects of �300 kinase inhibitors on the abundance of 70 phospo-epitopes in the
context of epidermal stem cell response to epidermal growth factor receptor signaling [58]. This
study was at the level of cell populations, not single cells, but it is an impressive proof-of-
concept nevertheless. Applying even simple regression models to such data could yield
insights into the organization of signaling pathways. Coupled with a genetic LoF screen, more
complex machine learning techniques, such as nested effects models [59], might be able to
accurately and automatically reconstruct them from phospho-epitope quantification data (see
Outstanding Questions).

Interrogating Chromatin State at Single-Cell Resolution
Chromatin state at noncoding DNA elements provides another key biochemical mechanism by
which a cell establishes its gene regulatory network. A cell’s response to signaling inputs is in
Trends in Genetics, September 2018, Vol. 34, No. 9 657



large part determined by pre-existing chromatin state. So-called ‘pioneer’ TFs, named for their
ability to bind to closed, nucleosome-bound chromatin and make it accessible to other TFs
[60], are a minority among the repertoire of TFs expressed in a cell. Other TFs, including
effectors of signaling pathways such as the glucocorticoid receptor, predominantly bind to
accessible chromatin [36,61,62]. Studies on ‘dynamic assisted loading’ [37,63,64], a process
in which TFs cooperate stochastically to displace nucleosomes, have shown that the ‘pioneer’/
‘settler’ distinction is an simplification of reality; however, there remains substantial evidence
that in processes such as myogenesis [65–67], adipogenesis [68], and hematopoiesis [69–72],
binding of lineage-specific TFs is dependent on accessible chromatin states having been
established in advance by more general TFs that are expressed in multiple lineages.

Sequencing-based assays for interrogating chromatin state have the potential to accelerate the
process of developing mechanistic models for gene regulation, but several technological
hurdles remain. Ideally, an experimenter should be able to (i) quantify the temporal dynamics
of chromatin state in a biological process, (ii) relate chromatin state changes to TF binding, and
(iii) relate chromatin state changes to gene expression.

DNase-seq [73], ATAC-seq [74,75], and THS-seq [76] assays enable chromatin accessibility
to be profiled genome-wide, and ChIP-seq targeting histone modifications can provide
additional information, for example, to distinguish active from poised enhancers [77]. In some
cases, the temporal dynamics of chromatin state could be profiled with a simple time series of
bulk assays. Bulk assays however will convolute the dynamics of different cell types if used to
profile a heterogenous cell community. They can also be misleading for systems in which cells
differentiate asynchronously, as population-level dynamics will not reflect the sequence of
chromatin state changes that an individual cell goes through.

Just as sc-RNA-seq has resolved such problems for gene expression analysis, sc-ATAC-seq
[78,79] and single-cell THS-seq [7] hold the potential to resolve them for chromatin accessi-
bility analysis. These methods have already been applied to resolve cell types from heteroge-
neous tissues [7,80,81] and to reconstruct pseudotemporal trajectories of chromatin state
change during differentiation [82,83]. First-generation single-cell assays for chromatin acces-
sibility could be substantially improved in several ways. One method [79] relies on Fluidigm
microfluidics that can only process on the order of hundreds of cells per experiment. Other
methods [7,78] handle thousands of cells per experiment, but each cell’s chromatin accessi-
bility profile is more sparsely sampled (sparse coverage can be mitigated by aggregating cells
with similar accessibility profiles). Commercial kits have not yet been released for single-cell
chromatin assays (10X Genomics has announced one in development at the 2018 Advances in
Genome Biology and Technology conference), and analysis algorithms that exploit single-cell
accessibility data are only starting to appear. Despite these challenges, the potential utility of
these assays for quantitatively modeling gene regulation is tremendous.

A bulk or sc-ATAC-seq time series experiment can identify genomic sites that change in
accessibility over time. Having identified such sites, a natural question to ask is which TFs are
causing the chromatin state to change? One way to model this is as a simple logistic regression
[82]: predict whether a site’s accessibility will increase, decrease, or remain unchanged on the
basis of features associated with the site (Figure 2A). Ideally, these features would be direct
measurements of TF binding. ChIP-seq TF profiling is expensive and requires large numbers of
cells however. CUT&RUN [84], a new protocol that maps TF binding events using antibody-
guided MNase digestion, requires fewer cells and lower sequencing depth than ChIP-seq;
but it still requires a separate antibody and experiment for each TF one wants to examine.
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Figure 2. Regression Modeling for Single-Cell ATAC-Seq. (A) Sites that feature differential chromatin accessibility
between sub-populations of cells in a single-cell ATAC-sequencing (sc-ATAC-seq) experiment can be identified using
pseudotime analysis or other dimensionality reduction methods. A classification model can then be used to identify
sequence features that are predictive of a site being differentially accessible. Potential classifiers include a simple logistic
regression model that uses transcription factor binding motifs from a database as its features, or a more complex
convolutional neural network model that learns sequence features de novo. (B) Data from Pliner et al. [82] suggested that
distal regulatory elements and gene promoters that are accessible in the same single cells in sc-ATAC-seq data are
statistically more likely to be proximal to each other in 3D space that element pairs with uncorrelated accessibility patterns.
Pliner et al. developed an algorithm, Cicero, that uses co-accessibility patterns in sc-ATAC-seq data to infer the target
promoters of distal regulatory elements. These distal-to-promoter links can also be directly measured using assays such
as ChIA-PET [89–91], promoter capture HiC [92–94], and HiChIP [95,96]. (C) Given a map of distal element to promoter
links, one could construct a regression model that predicts gene expression based on sequence features in a gene’s
promoter and distal element ‘neighborhood’.
An alternative to using TF binding profiles to predict chromatin accessibility dynamics is to use
computational predictions of TF binding based on DNA sequence. In our experience, TF binding
imputed from sequence motifs (position weight matrices) is a mediocre predictor of chromatin state
changesandis limitedbythe fact thatmanyTFshavetheexactsamemotif.Moreadvancedmethods
for predicting TF binding, such as gapped kernel support vector machines [85,86] or convolutional
neural networks [87,88] may substantially improve our ability to explain chromatin state dynamics.

Quantitative models of chromatin state are a stepping stone toward models of gene expres-
sion, the ultimate ‘output’ of the various biochemical events that occur around regulatory DNA.
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In vertebrates, the prevalence of distal regulatory sites is a major impediment to models of gene
expression, as distal site to target gene relationships are difficult to predict. Promoter-to-distal-
site contacts can be directly quantified using assays such as ChIA-PET [89–91], promoter
capture HiC [92–94], and HiChIP [95,96]. HiChIP is a promising technology that dramatically
reduces the input number of cells required compared to ChIA-PET and promoter capture HiC
(�100 000 compared to �10 million or more).

An alternative approach was recently developed in which an algorithm, Cicero [82], is used to
computationally predict connections between promoters and distal sites based on patterns of
co-accessibility (Figure 2B) in sc-ATAC-seq data. We believe this method may enable the
reconstruction of cis-regulatory landscapes in heterogeneous tissue samples. As a proof-of-
concept, Cicero [82] was used to map cis-regulatory landscapes in the context of myoblast
differentiation. Using these maps, a regression model was trained in which changes in gene
expression were predicted based on sequence motifs in the gene promoter and at linked distal
sites (Figure 2C). Integrating distal sites into the model more than doubled the proportion of
variance explained, and the motifs that were most predictive of expression changes were those
of known myogenic TFs such as MYOD, MEF2C, and MEIS1.

We envision that future experiments will integrate sophisticated TF binding prediction, high-
quality promoter-to-distal-site maps, and large-scale sc-ATAC-seq datasets to develop
regression models that can predict gene expression dynamics and attribute them to TF activity
at specific sequences of regulatory DNA. Early work on ‘co-assays’ that measure ‘inputs’ such
as chromatin accessibility along with the ‘output’ of gene or protein expression in the same
single cells could dramatically improve the power and accuracy of such models compared to
methods that integrate data separate experiments. Currently, two such methods, scNMT-seq
[97] and Pi-ATAC [98], exist, but they are limited by low throughput. A sufficiently advanced
model of gene regulation would implicitly learn the ‘combinatorial logic’ that relates TF protein–
protein interactions to expression outputs and allows widely expressed TFs to regulate tissue-
specific genes. Such a model would also allow one to perform in silico mutagenesis experi-
ments to predict the functional impacts of noncoding human genetic variation [88,99–101].
Follow-up validation of candidate enhancers with genetic deletions or CRISPRi [96,102–104]
would be essential.

Single-cell assays also exist for other epigenetic features in addition to chromatin accessibility.
Single-cell bisulfite sequencing [105–108] profiles DNA methylation across whole genomes
and has recently adapted to support high throughputs using combinatorial indexing [109].
Since they profile the whole genome, these methods are expensive and require deep sequenc-
ing. In the latter study [109], the mean coverage of mappable CpG dinucleotides is 1.1% given a
mean unique aligned read count per cell of >400 000. Other single-cell methods include single-
cell ChIP-seq [110], which is limited by even greater sparsity than sc-ATAC (�1000 unique
reads/cell versus �10 000 for sc-ATAC), and single-cell Hi-C [111–115], which is well suited for
answering questions about 3D genome structure at the megabase scale, but is less suitable
(due to lack of resolution) for characterizing individual gene loci.

Relating Single-Cell States to Environmental Context
The single-cell assays discussed so far provide a wealth of tools for investigating how cells
enact a response to a developmental or environmental signal. In many contexts however, we do
not know what the most important signaling ligands are, or which cells are producing them.
Organoid models [116,117] can provide a controlled environment for investigating cell signaling
in development. Most organoid systems involve stimulating pluripotent stem cells (PSCs) with
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Figure 3. Spatial Gene Expression Analysis with In Situ Hybridization and sc-RNA-Seq. A cartoon illustrating
the analytical approach used by Halpern et al. [125], who profiled murine liver lobules with RNA fluorescence in situ
hybridization (FISH) and single-cell ATAC-sequencing (sc-RNA-seq). Liver lobules are hexagonal structures with a central
vein and portal veins at each vertex (shown as circles in the figure). The spatial axis of interest is the relative distance of a cell
from the central versus portal vein. Halpern et al. profiled the spatial expression patterns of a handful of ‘landmark genes’
with FISH. The position of cells from sc-RNA-seq on the central-to-portal axis was imputed based on their expression of
these landmark genes. Given the imputed cell positions, the spatial gene expression patterns of novel genes without FISH
data could be estimated. Some genes, such as Hamp and Igfbp2 featured non-monotonic expression patterns, peaking in
the middle between the pericentral and periportal regions. t-SNE is t-stochastic neighbor embedding.
signaling agonist/inhibitor molecules that mimic morphogen gradients in early development.
What makes an organoid an organoid however is that once primed by this initial exogenous
signaling, the cells, given suitable culture conditions, self-organize into organ-like structures
that contain cells differentiated into multiple distinct lineages. sc-RNA-seq has been used to
characterize the resulting heterogeneous cell populations [118–121].

Camp et al. [120] provide a model forhow to follow up an observational sc-RNA-seq experiment to
gain mechanistic insights into cell signaling. They made liver bud organoids by co-culturing human
PSC(hPSC)-derived hepaticendodermcellswith mesenchymal and endothelial cells and showed
with sc-RNA-seq that the development of hepatocytes in the organoid more closely resembled in
vivo hepatogenesis than homotypic differentiation of hPSCs into hepatocytes. They then com-
pared the signaling receptors and ligands expressed in each of the three cell types in the organoid
to perform an in silico screen for potential cross-lineage signaling events. The predictions were
validated with a multiplexed chemical screen in which miniaturized organoids were exposed to
signaling inhibitors and the ratio of hepatic to endothelial cells measured using confocal imaging.
This screen confirmed that inhibition of several pathways predicted in silico to be involved in cross-
lineage communication affected hepatic differentiation.

Profiling single-cell transcriptomes with RNA FISH allows for analyses of signaling interaction
between cell types to be performed in a native biological context. Unlike sequencing, RNA FISH
can be applied directly to tissue sections without cell dissociation. New protocols such as
MERFISH [122] and seqFISH [123] have scaled RNA FISH to profile hundreds of RNAs in the
same experiment, enabling high-throughput quantification of signaling ligands, receptors, and
other genes of interest in situ. Moreover, these imaging based readouts preserve the spatial
and morphological information present in the sample.
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Outstanding Questions
Could co-assaying single-cell (phos-
pho-)epitope abundances and expres-
sion measurements in single cells be
used to computationally reconstruct
cell signaling network architecture?

Can we accurately model the expres-
sion level of individual genes across
cell types based on chromatin acces-
sibility of noncoding DNA elements?

Regression models relating gene
expression dynamics to regulatory ele-
ment sequence features can identify
candidate transcription factors that
establish the global dynamics of a bio-
logical process. But how can the key
transcription factors and regulatory
elements that explain the dynamics
of individual, specific genes of interest
be identified with high throughput?

Can the quantitative and statistical
methods discussed here be adapted
to emerging single-cell technologies
that preserve spatial context, or will
new computational frameworks be
required?
Profiling the spatial expression patterns of a limited set of ‘landmark’ genes with in situ
hybridizations can allow one to impute the physical location of cells in a sc-RNA-seq assay
and correspondingly impute the spatial expression patterns of novel genes. This approach was
first demonstrated by Satija et al. [124], who integrated a database of in situ assays and sc-
RNA-seq data to impute spatial expression patterns in early zebrafish embryos. Karaiskos et al.
[9] performed a similar analysis for early Drosophila embryos and were able to impute complex
spatial expression patterns, such as stripes. Halpern et al. [125] applied this approach to the
murine liver, imputing the relationship between gene expression and physical distance from the
central vein versus portal nodes in liver lobules (Figure 3). In each system, variation in cell
morphology with respect to spatial position is much less prominent than variation in gene
expression, suggesting that cryptic spatial expression variation may exist in other biological
contexts that have putatively homogenous cell populations. We anticipate that adding addi-
tional multi-omic assays, such as single-cell protein epitope quantification chromatin accessi-
bility profiling, to spatial gene expression analysis will substantially advance our understanding
of how cell signaling and morphogen gradients give rise to stereotyped patterns of gene
expression in development.

Concluding Remarks and Future Directions
How does a complex animal endowed with consciousness arise from a single cell? This
fundamental question has driven human inquiry as far back as Aristotle. Many general gene
regulatory principles underlying the process of development, for example, cell signaling,
lineage-specific TFs, and chromatin biology, were demonstrated well before the genomics
era. Genomics gives us the opportunity to fill in all the details with high throughput to learn which
proteins, which DNA sequences, and which cell types are necessary in any given sub-task
within the grand program of development. With the advent of sc-RNA-seq, it is now feasible to
make a comprehensive ‘parts list’ for an entire organism. The challenge that remains is how to
scale traditional methods for interrogating the function of these parts, for example, genetic
screens, phospho-proteomics, chromatin state profiling, or in situ analysis, to keep pace with
the massive scale of observational data being generated (see Outstanding Questions).

Regression models provide a simple yet powerful tool that can leverage the scale and diverse
readouts provided by single-cell multi-omic assays to construct quantitative models of gene
regulation. As one profiles larger numbers of cells, one obtains more and more observations to
fuel a regression model and therefore the statistical power to fit a model with more and more
complex sets of features. In the coming years, single-cell datasets on the order of hundreds of
thousands or millions of cells will become commonplace. We anticipate that single-cell analysis
at this scale will allow us to model how interactions between genes, proteins, regulatory DNA,
and cell communities establish the epigenetic landscape more comprehensively and elegantly
than ever before.
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