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Figure 7. A model of how 
chromatin hub activation could be 
nucleated by a subset of 
“precociously” opening DNA 
elements within it. Such sites are 
occupied by transcription factors 
competent to bind relatively closed, 
inactive DNA elements, such as 
MEIS1, which may tether less 
competent factors such as MYOD 
to the hub. Subsequent recruitment 
of p300 and the BAF complex, 
possibly through intermediary 
factors (e.g. MYOD),  leads to 
remodeling and acetylation of 
histones throughout other DNA 
elements nearby in the hub. These 
newly available sites are then 
bound by other transcriptional 
activators (e.g. MEF2), leading to 
the recruitment of Pol II. Moreover, 
acetylation of the histones 
downstream of assembled pre-
initiation complexes reduces the 
barrier they pose to elongation, 
enhancing efficient transcription of 
genes within the hub. 
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Methods 

Cell culture (HSMM and GM12878) 
HSMM derived from quadriceps biopsy (Lonza, catalog #CC-2580, lot #257130: healthy, age 
17, female, of European ancestry, body mass index 19; cells were used within 5 passages of 
purchase) were cultured in skeletal muscle growth media (GM) using the SKGM-2 BulletKit 
(Lonza). The cells and differentiation protocol are those from Trapnell et al. (2014). Cells were 
seeded in 15 cm dishes, media being replenished every 48 hours and cells were seeded in 15 
cm dishes, cells allowed to reach 80-90% confluence. Differentiation was induced at time 0 via a 
switch to differentiation medium (DM) composed of alpha-mem (Thermo Fisher Scientific) and 
2% horse serum. Cells in GM (time 0) or DM were then harvested at the specified times and 
processed as described below. HSMM tested negative for mycoplasma contamination within 6 
months of the experiment. 
 
GM12878 (purchased from Coriell Cell Repository) was cultured in RPMI 1640 medium (Gibco 
11875) supplemented with 15% FBS, 100U/ml penicillin and 100 µg/ml streptomycin. Cells were 
cultured in an incubator at 37C with 5% CO2 and were split to a density of 300,000 cells/ml 
three times a week. 

Sci-ATAC-seq library construction 
We prepared sci-ATAC-seq libraries using an improved version of the original protocol 
(Cusanovich et al, 2017, submitted). 

Defining accessible sites 
To define peaks of accessibility across all sites, we used the MACS (version 2.1.0) (Zhang et 
al., 2008) peak caller. Cells with fewer than 1,000 reads were filtered, and reads from repeat-
masked regions of the genome were excluded from peak-calling. Promoter peaks were further 
defined as the union of the annotated transcription start site (TSS) (Gencode V17) minus 500 
base pairs, and MACS defined peaks upstream of the TSS. Cells were determined to be 
accessible at a given peak if a read from that cell overlapped the peak.  
 
560 barcodes from the HSMM dataset and 100 barcodes from the GM12878/HL60 dataset with 
a high percentage of peaks with more than 2 reads mapping to them were excluded as potential 
doublets. 
 
For the GM12878 and HL60 mixed dataset, preliminary peaks were called by MACS and used 
to separate the cell types using multi-dimensional scaling by Jaccard distance. The subset of 
reads from GM12878 cells was then used to recall peaks for GM12878 as above.  

Pseudotemporal ordering 
For the HSMM dataset, contaminating interstitial fibroblasts were removed in silico based on the 
absence of promoter accessibility in any of several known muscle markers (MYOG, MYOD1, 
DMD, TNNT1, MYH1, TPM2). In addition, cells with fewer than 1,000 accessible sites were 
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excluded due to low assay efficiency. Finally, peaks present in less than 1% of cells were 
excluded during pseudotemporal ordering steps. 
 
Despite improvements to the sci-ATAC-seq protocol that delivered a substantial increase in the 
number of sites detected per cell, sci-ATAC-seq data remains zero-inflated. The quality and 
efficiency of transposition, which varies between cells and across batches, is likely to be a major 
technical source of variation in the data. Simple dimensionality reduction techniques such as 
MDS show that a poorly-assayed cell is often more similar to other poorly-assayed cells of a 
different type than to well-assayed cells of the same type. In order to accurately group cells with 
similar chromatin accessibility profiles, we first clustered peaks that were within 1 kb and 
summed the reads overlapping them to create an integer-valued count matrix .  
 
To order the cells by progress through differentiation, we determined which aggregated peaks 
were relevant to the HSMM time course by fitting the following model:  
 

 
 
Where  is the mean of a negative binomially-distributed random variable for the number of 
reads overlapping the aggregate region ,  encodes the times at which each cell was 
harvested and  is the total number of accessible sites in each cell. We compared this full 
model to the reduced model:  
 

 
 
by likelihood ratio test. Sites determined by this method to be time dependent and which were 
accessible in less than 10% of cells were then used to reconstruct the pseudotime trajectory 
using Monocle 2 (parameters ncenter and param.gamma set to 100, see (Qiu et al., 2017)). To 
remove any bias created by different assay efficiency in different cells, total sites accessible was 
included as a covariate in the tree reconstruction. Each cell was assigned a pseudotime value 
based on its position along the trajectory tree. Cells that mapped to the F2 branch were excluded 
from downstream analysis. 

Differential accessibility analysis 
When testing for differential accessibility across cells at a particular site, it is important to 
exclude technical variation due to differences in assay efficiency as discussed above. We first 
grouped cells at similar positions in pseudotime. We did this by k-means clustering along the 
pseudotime axis (k=10). These clusters were further subdivided such into groups containing at 
least 50 and no more than 100 cells. Next, we aggregated the binary accessibility profiles of the 
cells in each group into a matrix , so that  contains the number of cells in group  for which 
DNA element  is accessible. The average pseudotime  and average overall cell-wise 
accessibility  for cells in each group  were preserved for use during differential analysis. 
 
To determine which peaks of accessibility were changing across pseudotime, we fit the 
following model to the binned data: 
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Where  is the mean of a negative-binomial valued random variable of cells in which site  is 
accessible, and the tilde above  and  indicates that these predictors are smoothed with 
natural splines during fitting. This model was compared to the reduced model: 
 

 
 
by the likelihood ratio test. Peaks with an adjusted p-value of less than 0.05 were determined to 
be dynamic across pseudotime. 
 
Gene set enrichment analysis 
Gene set enrichment analysis was conducted using the R package piano (Väremo et al., 2013) 
using a hypergeometric test. We tested against the Human GO Biological Processes gene set 
from (Merico et al., 2010). 

Cicero 
Cicero aims to identify all pairs of co-accessible sites.  The algorithm takes as input a matrix of 

 by  binary accessibility values , where  is zero if no read was observed to overlap peak 
 in cell  and one otherwise. The algorithm also requires either a pseudotemporal ordering of 

the cells along a developmental trajectory (e.g. with Monocle 2) or the coordinates of the cells in 
some sufficiently low dimensional space (e.g. a t-SNE map) that the cells can be readily 
clustered. The algorithm then executes the following steps, which are detailed in the sections 
below: first, groups of highly similar cells are sampled using the clustering or pseudotemporal 
ordering, and their binary profiles are aggregated into integer counts. Second, these counts are 
optionally adjusted for user-defined technical factors, such as experimental batch. Third, Cicero 
computes the raw covariances between each pair of sites within overlapping windows of the 
genome. Within each window, Cicero estimates a regularized correlation matrix using the 
graphical LASSO, penalizing pairs of distant sites more than proximal sites. Fourth, these 
overlapping covariance matrices are “reconciled” to produce a single estimate of the correlation 
in accessibility across groups of cells. These correlation scores are reported to the user, who 
can extract modules of sites that are connected in co-accessibility networks by first specifying a 
minimum correlation score and then using the Louvain community detection algorithm on the 
subgraph induced by excluding edges below this score.  

Grouping cells 

In principle, Cicero could analyze the sample covariance computed between the vectors  and 
 of binary values encoding accessibility across cells for a pair of sites  and . However, rather 

than working with the binary data directly, Cicero groups similar cells and aggregates their 
binary accessibility profiles into integer count vectors that are easier to work with in downstream 
steps. Under the grouping discussed below, the number of cells in which a particular site is 
accessible can be modeled with a binomial distribution or, for sufficiently large groups, the 
corresponding Gaussian approximation. Modeling grouped accessibility counts as normally 

. CC-BY-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/155473doi: bioRxiv preprint first posted online Jun. 26, 2017; 

http://dx.doi.org/10.1101/155473
http://creativecommons.org/licenses/by-nd/4.0/


 

23 

distributed allows Cicero to easily adjust them for arbitrary technical covariates by simply fitting 
a linear model and taking the residuals with respect to it as the adjusted accessibility score for 
each group of cells.  
 
In order to control for technical variation as discussed above, Cicero operates on a grouped cell 
count matrix, .  is constructed by first mapping cells into 2 dimensions by either Monocle 2 or 
tSNE. Within this space, Cicero constructs a k-nearest neighbor graph, via the the FNN 
package, which is based on KD-trees and is highly efficient and scales to large numbers of 
cells. Cicero then selects  random cells, and their  nearest neighbors are grouped. 
Accessibility counts are then summed across all cells in a group to create count matrix .  

Adjusting accessibility counts for technical factors 

To normalize for variations in assay efficiency across groups, matrix  is divided by a group-
wise scaling factor (computed using the standard Monocle 2 method for library size calculations 
(estimateSizeFactors()) to create an adjusted accessibility matrix . Because the entries 
of  are integer counts that can reasonably be approximated by Gaussian distributions, this 
matrix can be readily adjusted for arbitrary technical covariates (e.g. using the Limma package’s 
removeBatchEffect() function). In this study we did not adjust for factors beyond library 
size. 

Computing co-accessibility scores between sites 
Cicero next analyzes the covariance structure of the adjusted accessibilities in . Given enough 
data, Cicero could in principle simply compute the raw covariance matrix . However, because 
the number of possible pairs of sites is far larger than the number of groups of cells, Cicero uses 
the Graphical Lasso to compute a regularized covariance matrix to capture the co-accessibility 
structure of the sites. The Graphical LASSO computes the inverse of the sample covariance 
matrix, which encodes the partial correlations between those variables as well as the 
regularized covariance matrix (Friedman et al., 2008). These constitute a statistically 
parsimonious description of the correlation structure in the data: informally, two variables are 
partially correlated when they remain correlated even after the effects of all other variables in 
the matrix are excluded. The Graphical LASSO expects a small fraction of the possible pairs of 
variables to be partially correlated, preferring to select a sparse inverse covariance matrix over 
a dense one that fits the data equally well. Those pairs of sites that lack sufficient partial 
correlation to be worth the penalty term are assigned zero partial correlation in the inverse 
covariance matrix reported by Graphical LASSO. Formally, Cicero uses Graphical LASSO to 
maximize: 
 

 
 
Where  is the inverse covariance matrix capturing the conditional dependence structure of  
accessible sites, and  is the sample covariance matrix computed from their values in . In 
order to ensure stability of GLASSO, which can hang on poorly conditioned input, we add a 
small conditioning constant of 1e-4 to the diagonal of  prior to running it. The matrix  contains 
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penalties that are used to independently penalize the covariances between pairs of sites, and  
denotes component-wise multiplication. 
 
In Cicero, we aim to find local cis-regulatory interactions, rather than global covariance structure 
that might be expected due to overall cell state. To achieve this, we set each penalty term in  
such that peaks closer in genomic distance had a lower penalty term. Specifically, we used the 
following equation to determine : 
 

 
 
Where  is the distance in the genome (in kilobases) between sites  and  and  is a constant 
that captures the power-law distribution of contact frequencies between different locations in the 
genome as a function of their linear distance. A complete discussion of the various polymer 
models of DNA packed into the nucleus is beyond the scope of this paper, but we refer readers 
to (Dekker et al., 2013) for a discussion of justifiable values for . We use a value of 0.75 by 
default in Cicero, which corresponds to the “tension globule” polymer model of DNA (Sanborn et 
al., 2015).  The scaling parameter  controls the distance at which Cicero expects no 
meaningful cis-regulatory contacts, and its value is calculated automatically from the data. To 
calculate , Cicero selects 200 random 500 kb genomic windows, and determines the minimum 
 value such that no more than 10% of pairs of sites at a distance greater than 250 kb (a user-

adjustable value) had non-zero entries in . The mean of these values of  is then used to set 
the penalties for the whole genome. Cicero then applies Graphical LASSO to overlapping 500 
kb windows of the genome (windows are spaced by 250 kb such that each region is covered by 
two windows).  
 

Reconciling overlapping local co-accessibility maps  

Cicero calculates correlation values (co-accessibility scores) from the resulting estimated sparse 
covariance matrix for each pair of peaks within 500 kb of each other. Because the genomic 
windows are overlapping, the majority of pairs of peaks have two calculations of co-accessibility. 
To consolidate these sites and create a genome-wide map of the accessible regulome, Cicero 
considers the co-accessibility scores for each pair of peaks to determine if they are in qualitative 
agreement (both calculated scores in the same direction). The qualitative agreement in our two 
test datasets were both >95%. Pairs of peaks not in qualitative agreement are considered 
undetermined. For peaks in qualitative agreement, the mean score of the two values is 
assigned. 

Extracting cis-co-accessibility networks (CCANs) 

Positive Cicero co-accessibility scores indicate that a pair of peaks is connected, with the 
magnitude of the co-accessibility corresponding to Cicero’s confidence in the link. To identify 
hubs of co-accessibility, Cicero can create a graph where each node is a peak of accessibility, 
and edges are the co-accessibility scores above a user-defined threshold. Communities within 
this genome-wide graph can be found using the Louvain community finding algorithm. Cicero 
can then assign peaks to cis-coaccessibility networks (CCANs) based on these communities. 
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Motif enrichment analysis 
Transcription factor motifs from the JASPAR 2016 database (Mathelier et al., 2016) were 
located in the sci-ATAC-seq peaks using FIMO (Grant et al., 2011). Motifs for TFs not 
expressed at ≥ 2 transcripts per million in bulk RNA-seq (HSMM myoblasts or myotubes) were 
excluded from downstream analysis. Many TF motifs are similar or identical to each other. To 
prevent this correlation from confounding regression analyses, we clustered motifs into motif 
families. For each pair of motifs A and B, we computed the conditional probability that given 
motif A is called at a genomic location with a FIMO p-value < 2e-5 (a stringent threshold), an 
overlapping instance of motif B will be called at p < 1e-4 (a permissive threshold). We 
constructed an undirected graph of motifs where there is an edge between motifs A and B if P(B 
at p < 1e-4 | A at p < 2e-5) ≥ 0.5 or P(A at p < 1e-4 | B at p < 2e-5) ≥ 0.5. Edges in this graph 
are assigned weights equal to the greater of these two conditional probabilities minus 0.5. We 
clustered the motifs on this graph using Louvain clustering (Blondel et al., 2008) and manually 
assigned names to each cluster. For downstream regression analyses, a genomic location is 
considered to have an instance of a motif family if any motif in the family is called at that location 
at p < 5e-5 (an intermediate threshold). 
 
To generate the motif co-accessibility networks shown in Supplemental Figure 4, we computed 
two sets of binary variables for each protein coding gene that had at least one sci-ATAC-seq 
peak in its promoter(s). The first set of variables are indicators of whether or not at least one 
instance of a motif family is present in any promoter peak for the gene. The second set of 
variables are indicators of whether or not at least one motif instance is present in any distal 
peak (excluding promoters of other genes) that is within the same Cicero CCAN (correlation 
score > 0.05) as the gene’s promoter(s). We constructed a matrix where rows are genes and 
columns are these two sets of motif indicator variables. This matrix was provided as input to the 
Graphical LASSO subject to the constraint that partial correlations between two promoter motif 
variables or two distal motif variables are fixed to zero. The regularization parameter ρ for the 
Graphical LASSO was set as the smallest value that could achieve an estimated false discovery 
rate (FDR, the proportion of truly-zero partial correlations that are estimated as non-zero) of less 
than 5%. The FDR for a given value of ρ was estimated by running the Graphical LASSO with 
that value of ρ on versions of the motif indicator matrix with the distal variables row-shuffled 
(essentially assigning each gene to a random other gene’s set of distal motifs) and counting the 
proportion of motif pairs that are assigned a non-zero partial correlation (ideally, all should be 
zero in a shuffled matrix). 
 In Supplemental Figure 4, an edge is drawn between a pair of motif families A and B if 
both 1) the partial correlation of the indicator variable for A being at a distal site to the indicator 
variable of B being at a linked promoter site is > 0.02, and 2) the same is true if B is in the distal 
position and A is in the promoter. 
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Analysis of ChIA-PET and Hi-C data 
To compare our Cicero connections to Hi-C data, we used publicly accessible GM12878 data 
(Rao et al., 2014) (GSE63525) at 5 kb resolution. The intrachromosomal raw contact matrices 
were normalized using the provided normalization vector obtained using the matrix balancing 
procedure of Knight and Ruiz and described by Rao et al. The normalized contact matrices 
were further transformed by dividing by the genome-wide model of interaction probability as a 
function of 1-dimensional genomic distance also described by Rao et al. By dividing by the 
expected contact probability based on distance, we were able to consider Hi-C interactions 
beyond those expected by linear genomic distance. To compare our data to Hi-C, we first 
assigned each peak to its appropriate 5 kb bin, and then considered the mean 
observed/expected Hi-C contact probability at various distances between bins connected by 
Cicero at various co-accessibility score cutoffs. If two bins were connected by multiple co-
accessibility scores, the bin connection was categorized based on the largest score. As a 
comparison, we also calculated the mean contact probability between bins containing 
accessible sites with co-accessibility scores less than or equal to zero. Lastly, Figure 4A 
includes the mean observed/expected Hi-C contact probability across all somatic chromosomes. 
 
As a second comparison dataset, we used publicly accessible GM12878 polII ChIA-PET data 
(Tang et al., 2015) (GSE72816). To compare these data to Cicero’s connections, we first looked 
for overlap between our peaks, and ChIA-PET anchors. Because ChIA-PET anchors often 
overlap each other, we first merged overlapping anchors to create comparable ChIA-PET 
“peaks”. We considered accessible peaks within 1 kb of ChIA-PET peaks to be overlapping. To 
generate Figure 4C-E, we considered the subset of ChIA-PET and Cicero connections where 
the peaks were present in both datasets. 
 

Analysis of ChIP-Seq data (MYOD and histone) 
To compare our accessible peaks to the known myogenesis master regulator MyoD, we used 
publicly accessible MyoD ChIP-seq in human myoblast and human myotube(MacQuarrie et al., 
2013) (GSE50413). We considered our peaks to be bound by MyoD if they overlapped one of 
the annotated MacQuarrie et al. ChIP-seq peaks. 
 
To compare our accessible peaks to histone modifications, we used publicly accessible 
ENCODE datasets in HSMM and HSMMtube (The ENCODE Project Consortium, 2012) 
(ENCFF000BKV, ENCFF000BKW, ENCFF000BMB, ENCFF000BMD, ENCFF000BOI, 
ENCFF000BOJ, ENCFF000BPL, ENCFF000BPM). We counted both HSMM and HSMMtube 
histone ChIP-seq reads in each accessible peak. To determine whether sites were changing in 
accessibility between HSMM and HSMMtube, we used DESeq2 differential analysis (Love et al., 
2014) (FDR < 5%). To determine whether the barrier regions of genes were differentially histone 
modified, we similarly used DESeq2 to compare the read counts in the first 1000 base pairs of 
each GENCODE v17 transcript in HSMM and HSMMtube datasets.  
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To compare agreement between H3K27 acetylation marks of peaks connected by Cicero, we 
divided the odds of a site gaining acetylation if it’s connected site gained acetylation by the odds 
of a site gaining acetylation is it is connected to a site that is not gaining acetylation (Figure 5A). 
 
Modeling H3K27 Acetylation Changes: 
 
To model changes in acetylation among linked sites (Figure 5D), we compared four linear 
regression models: 
 

 
 

 
 

 
 

 
 
where  is the log2 fold-change in H3K27 acetylation from myoblast to myotube at site ,  
and  are indicator variables for whether site  is closing or opening across pseudotime, , 

 and  are indicator variables for whether site  is gaining, losing, or constitutively bound by 
MYOD from myoblast to myotube according to ChIP-seq,  and   are the highest Cicero co-
accessibility scores that connect site  to another opening or closing site respectively, and , 

 and  are the highest Cicero co-accessibility scores that connect site  to another MyoD 
gaining, MyoD losing or MyoD constitutive site. For each of the fitted models, we used elastic 
net regression (Zou and Hastie, 2005) to estimate the effect of each predictor. 
 
Similarly, in Supplemental Figure 5, we predict the log2 fold-change in each of the 12 ENCODE 
histone mark ChIP-seq datasets described above using only indicator variables for whether a 
site is gaining losing or constitutively bound by MYOD, or using these variables and the highest 
Cicero co-accessibility scores connecting a site to an opening or closing site. 
 
Regression models for barrier region histone marks and gene expression: 
 
For each of the 12 ENCODE histone mark ChIP-seq datasets described previously, we fit two 
regression models that predict, for each transcription start site, the log fold change in the 
number of reads from the given ChIP-seq dataset that fall in the barrier region of that TSS (first 
1000 bp downstream) for myotubes vs. myoblasts. We exclude TSSs that do not have a 
significantly different number of barrier region reads in myotubes vs. myoblasts for any of the 12 
datasets (p > 0.01), leaving 6,205 TSS included in the model. 
 
In the first set of models (“promoter motifs”), the features are a set of binary indicator variables 
that have value 1 if any promoter sci-ATAC-seq peak for the TSS has at least one instance of a 
motif from a given motif family. In the second set of models (“promoter and distal motifs”), the 
features are the promoter motif indicator variables plus a second set of real-valued variables 
that encode the presence of distal sequence motifs. For a given motif family and TSS, the 
corresponding distal motif variable has a value equal to the highest co-accessibility score from 
any promoter sci-ATAC-seq peak for that TSS to any connected distal peak that has at least 
one instance of a motif from the motif family. If no such distal peak exists (the motif is absent in 
all connected distal sites), the distal motif variable is assigned a value of 0. The models were 
trained using elastic net regression. 
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We additionally fit models with the same features (“promoter motifs” and “promoter and distal 
motifs”) to predict the expression of the subset of the above TSSs (n = 929), that were 
additionally expressed in at least 4 cells in scRNA-seq and which were predicted by smoothed 
average across pseudotime to be expressed at above 1 copy per cell at some pseudotime.  
 
Data Availability 
Sci-ATAC-seq data will be made publicly available upon publication. 
 
Code Availability 
We will release Cicero as an R package through Github and Bioconductor upon publication.  
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