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Defining the transcriptional dynamics of a temporal  
process such as cell differentiation is challenging owing to 
the high variability in gene expression between individual 
cells. Time-series gene expression analyses of bulk cells 
have difficulty distinguishing early and late phases of a 
transcriptional cascade or identifying rare subpopulations 
of cells, and single-cell proteomic methods rely on a priori 
knowledge of key distinguishing markers1. Here we describe 
Monocle, an unsupervised algorithm that increases the 
temporal resolution of transcriptome dynamics using  
single-cell RNA-Seq data collected at multiple time points. 
Applied to the differentiation of primary human myoblasts, 
Monocle revealed switch-like changes in expression of key 
regulatory factors, sequential waves of gene regulation,  
and expression of regulators that were not known to act  
in differentiation. We validated some of these predicted 
regulators in a loss-of function screen. Monocle can in 
principle be used to recover single-cell gene expression 
kinetics from a wide array of cellular processes, including 
differentiation, proliferation and oncogenic transformation.

Cellular processes such as proliferation, differentiation and repro-
gramming are governed by complex gene-regulatory programs. 
Progress through these processes is a function not only of time but 
also of cell-cell signaling and other stimuli. During differentiation, for 
example, each cell makes independent fate decisions by integrating a 
wide array of signals from other cells and executing a complex chore-
ography of gene-regulatory changes. Thus individual cells can execute 
the same sequence of transcriptional changes over highly varying 
time scales. Unraveling the network of gene regulatory interactions 
remains a central goal of efforts to understand these processes.

Recently, several studies carried out at single-cell resolution revealed 
high cell-to-cell variation in the expression of most genes, even key 
developmental regulators, during the differentiation process2–6.  
Such high variability can complicate analysis of these experiments7. In 
general, averages of measurements from two or more distinct groups of 
data points can follow trends that qualitatively differ from the trend that 
describes each group, a phenomenon known as Simpson’s paradox8.  

Such averaging artifacts can make factors that are correlated appear 
to be uncorrelated or even make positively correlated factors  
appear negatively correlated. As a population of cells captured at  
the same time may include many distinct intermediate differen-
tiation states, considering only its average properties would mask  
trends occurring across individual cells. Solving this problem by 
experimental synchronization of cells or by stringent isolation  
of precursors at distinct stages is challenging and can sharply alter 
differentiation kinetics.

Computational analysis of gene expression data could help  
define biological progression between cellular states and reveal regulatory  
modules of genes that co-vary in expression across individual cells9. 
Previous analyses have used approaches from computational geom-
etry10,11 to order bulk cell populations from time-series microarray 
experiments by progress through a biological process independently 
of when the samples were collected. The recently developed SPD algo-
rithm can resolve progression along multiple lineages arising from a 
progenitor cell type using supervised machine learning12. However, 
because these algorithms operate on bulk expression measurements, 
they are sensitive to mixture effects arising from Simpson’s para-
dox and other averaging artifacts. Single-cell assays such as flow or 
mass cytometry1, coupled with machine learning algorithms such as 
SPADE13, can overcome these effects to reconstruct complex lineages 
and resolve intermediate stages of progress through differentiation. 
Coupled with SPADE, cytometry can track changes in up to 32 proteins  
to reconstruct complex cellular hierarchies of differentiation and 
reveal rare cell states. In principle, single-cell RNA-Seq could also 
be used to resolve cellular transitions during differentiation through 
temporal profiling of the entire transcriptome.

We hypothesized that ordering whole-transcriptome profiles  
of single cells with an unsupervised algorithm would improve  
temporal resolution during differentiation without a priori knowl-
edge of marker genes. In essence, one RNA-Seq experiment would  
constitute a time series, with each cell representing a distinct time 
point along a continuum. Monocle is derived from a previous algo-
rithm10 for temporally ordering bulk microarray samples but extends 
it to accommodate single-cell variation and to allow for multiple  
cell fates stemming from a single progenitor cell type. Monocle  
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orders single-cell expression profiles in ‘pseudotime’—a quantitative 
measure of progress through a biological process.

We began by investigating the single-cell transcriptome dynam-
ics of skeletal myoblasts during differentiation. Skeletal myoblasts 
undergo a well-characterized sequence of morphological and tran-
scriptional changes during differentiation14. Global expression and 
epigenetic profiles have reinforced the view that a small cohort of 
transcription factors (for example, MYOD, MYOG, MRF4 and MYF5)  
orchestrates these changes15. However, efforts to expand this set 
of factors and map the broader myogenic regulatory network have 
been hampered by the low temporal resolution of global expression 
measurements, with thousands of genes following a limited number 
of coarse kinetic trends16. We expanded primary human skeletal  
muscle myoblasts (HSMM) under high-mitogen conditions (GM) and 
induced differentiation by switching to low-serum medium (DM). 
We captured between 49 and 77 cells at each of four time points 
after the switch to DM using the Fluidigm C1 microfluidic system.  
RNA from each cell was isolated and used to construct a single 
mRNA-Seq library per cell, which was then sequenced to a depth of 
~4 million reads per library, resulting in a complete gene expression 
profile for each cell (Fig. 1a and Supplementary Fig. 1).

We first confirmed that the average of the expression profiles 
of single cells collected at the same time correlated well with bulk 
RNA-Seq libraries at those times, and moderately expressed genes 
were detectable (≥1 fragment per kb per million mapped fragments 
(FPKM)) in most individual cells (Fig. 1b and Supplementary  
Figs. 2 and 3). However, markers of mature myocytes were present 
at all time points after serum switch, and many other genes showed 
similar temporal heterogeneity (Fig. 1c). We speculated that the high 
variability in cell-to-cell gene expression levels was due to unsyn-
chronized differentiation, with myoblasts, intermediate myocytes and 
mature myotubes residing in the same well. Indeed, large, multinu-
cleated cells expressing MYH2, a marker of mature myotubes, were 
abundant after 72 h in DM, but these cells were present at lower  
frequency even at 24 h (Fig. 1d).

We developed Monocle (Online Methods and Supplementary 
Source Code) to informatically order the cells by their progress 

through differentiation rather than by the time they were collected, 
maximizing the transcriptional similarity between successive pairs of 
cells (Fig. 2a). First the algorithm represents the expression profile of 
each cell as a point in a high-dimensional Euclidean space, with one 
dimension for each gene. Second, it reduces the dimensionality of 
this space using independent component analysis17. Dimensionality 
reduction transforms the cell data from a high-dimensional space into 
a low-dimensional one that preserves essential relationships between 
cell populations but is much easier to visualize and interpret18. Third, 
Monocle constructs a minimum spanning tree (MST) on the cells, a 
previously developed approach now commonly used in other single-
cell settings, such as flow or mass cytometry1,13. Fourth, the algorithm 
finds the longest path through the MST, corresponding to the long-
est sequence of transcriptionally similar cells. Finally, Monocle uses 
this sequence to produce a ‘trajectory’ of an individual cell’s progress 
through differentiation.

As cells progress along a differentiation trajectory, they may  
diverge along two or more separate paths. After Monocle finds the 
longest sequence of similar cells, it examines cells not along this 
path to find alternative trajectories through the MST. It orders these  
subtrajectories and connects them to the main trajectory, and  
annotates each cell with both a trajectory and a pseudotime value. 
Monocle thus orders cells by progress through differentiation and can 
reconstruct branched biological processes, which might arise when 
a precursor cell makes cell fate decisions that govern the generation 
of multiple subsequent lineages. Importantly, Monocle is unsuper-
vised and needs no prior knowledge of specific genes that distinguish  
cell fates, and is thus suitable for studying a wide array of dynamic 
biological processes.

Monocle decomposed myoblast differentiation into a two-phase 
trajectory and isolated a branch of nondifferentiating cells (Fig. 2b). 
The first phase of the trajectory was primarily composed of cells col-
lected under high-mitogen conditions and that expressed markers of 
actively proliferating cells, such as CDK1, whereas the second mainly 
consisted of cells collected 24, 48 or 72 h after serum switch. Cells 
in the second phase were positive for markers of muscle differentia-
tion such as MYOG (Supplementary Fig. 4). A tightly grouped third 
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Figure 1 Monocle orders single-cell RNA-Seq data of  
differentiating myoblasts in pseudotime. (a) Primary human  
myoblasts were cultured in high-serum medium. After a switch  
to low-serum medium, cells were dissociated and individually  
captured at 24-h intervals. We then prepared and sequenced an  
RNA-Seq library for each cell. (b) Gene expression averaged  
across individual cells harvested at time zero compared against  
bulk RNA-Seq (n = 3, biological replicates). (c) Expression of  
late-stage markers of myoblast differentiation (Enolase 3,  
ENO3; myosin heavy chain 3, MYH3) in individual cells. Points  
are colored by time collected (0 h, red; 24 h, gold; 48 h, light blue; 72 h, dark blue). (d) Representative immunofluorescence staining at the moment of 
cell sampling of the indicated markers (myocyte enhancer factor 2C, MEF2C in green; myosin heavy chain, MYH2/MHC in red; Hoechst staining in blue; 
scale bar, 100 µm). Inset is a magnification of the boxed region, showing MEF2C only. 
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population of cells branched from the trajectory near the transition 
between phases. These cells lacked myogenic markers but expressed 
PDGFRA and SPHK1, suggesting that they are contaminating intersti-
tial mesenchymal cells and did not arise from the myoblasts. Such cells 
were recently shown to stimulate muscle differentiation19. Monocle’s 
estimates of the frequency and proliferative status of these cells  
were consistent with estimates derived from immunofluorescent 
stains against ANPEP (also known as CD13) and nuclear Ser10- 
phosphorylated histone H3 (Supplementary Fig. 4). Monocle thus 
enabled analysis of the myoblast differentiation trajectory without 
subtracting these cells by immunopurification, maintaining in vitro 
differentiation kinetics that resemble physiological cell crosstalk 
occurring in the in vivo niche.

To find genes that were dynamically regulated as the cells pro-
gressed through differentiation, we modeled expression of each gene 
as a nonlinear function of pseudotime. A total of 1,061 genes were 

dynamically regulated during differentiation (false discovery rate 
(FDR) < 5%; Fig. 2c). Cells positive for MEF2C and MYH2, early and 
late markers of differentiation, respectively, were present at expected 
frequencies as assayed by both immunofluorescence and RNA-Seq. 
Moreover, the pseudotime ordering of cells shows an increase in 
MEF2C+ cells before the increase in MYH2+ cells (Fig. 2d). Notably, 
genes that act at the early and late stages of muscle differentiation 
showed pseudotemporal kinetics that were highly consistent with 
expectations, with cell-cycle regulators active early in pseudotime 
and sarcomere components active later, confirming the accuracy of 
the ordering (Supplementary Fig. 5).

We next examined the pseudotemporal kinetics of a set of genes 
whose mouse orthologs are targeted by Myod, Myog or Mef2 pro-
teins in C2C12 myoblasts20 (Supplementary Fig. 6). The kinetics of 
these genes during differentiation were highly consistent with changes 
observed during mouse myogenesis, with nearly all significantly 
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Figure 2 Monocle orders individual cells by progress through differentiation. (a) An overview of the Monocle algorithm. (b) Cell expression profiles 
(points) in a two-dimensional independent component space. Lines connecting points represent edges of the MST constructed by Monocle. Solid 
black line indicates the main diameter path of the MST and provides the backbone of Monocle’s pseudotime ordering of the cells. (c) Expression 
for differentially expressed genes identified by Monocle (rows), with cells (columns) shown in pseudotime order. Interstitial mesenchymal cells are 
excluded. (d) Bar plot showing the proportion of MEF2C- and MYH2-expressing cells measured by immunofluorescence at the time of collection (top), 
RNA-Seq at the time of collection (middle) or RNA-Seq at pseudotime (bottom). MEF2C was considered detectably expressed at or above 100 FPKM, 
MYH2 at 1 FPKM. MEF2C exhibits a bimodal pattern of expression across the cells (not shown), and a threshold of 100 FPKM separates the modes.  
(e) Expression of key regulators of muscle differentiation, ordered by time collected (cyclin-dependent kinase 1, CDK1; inhibitor of DNA binding 1,  
ID1; myogenin, MYOG). (f) Regulators from e, ordered by Monocle in pseudotime. Points in e,f are colored by time collected (0 h, red; 24 h, gold;  
48 h, light blue; 72 h, dark blue). Error bars, 2 s.d.
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dynamically regulated genes also differen-
tially expressed during mouse myogenesis 
and vice versa. In contrast to the high reso-
lution of pseudotime ordering, simply com-
paring gene expression levels between groups 
of cells collected on different days masked 
changes in key transcriptional regulators of 
myogenesis. For example, the pseudotime 
reordering of the cells showed switch-like 
inactivation of ID1, which is a critical event 
in muscle differentiation and leads to the acti-
vation of MYOG15 (Fig. 2e,f). Thus, Monocle’s 
ordering of cells by progress increases tempo-
ral resolution of transcriptional dynamics, pinpointing the timing of 
key regulatory events that govern differentiation.

We further assessed Monocle’s robustness over different experi-
mental designs by simulating experiments with fewer captured cells. 
Monocle placed subsets as small as 50 cells in pseudotemporal order 
highly similar (Spearman ≥ 0.8) to their relative order in the full data 
set. The algorithm retained the ability to detect dynamically regulated 
genes with high precision (≥95%) over all designs and with increasing 
recall as more of the cells were included (Supplementary Fig. 7).

We next grouped genes with similar trends in expression, reason-
ing that such groups might share biological functions and regulators. 
Clustering of genes according to direction and timing revealed six 
distinct trends (Fig. 3). Genes downregulated early or upregulated late 
in pseudotime were highly enriched for biological processes central to 
myogenesis, including cell-cycle exit and activation of muscle-specific 
structural proteins. However, the other clusters included many genes 
with broad roles in development, including mediators of cell-cell  
signaling, RNA export and translational control, and remodeling of 
cell morphology (Supplementary Fig. 8).

A time-series analysis of myoblast differentiation with bulk  
RNA-Seq identified up- and downregulated genes but did not identify 
the transient clusters or distinguish the early from late regulation 
visible with pseudotemporally ordered single cells (Supplementary 
Fig. 9). Furthermore, dynamic range of expression was compressed 
for most genes, confirming that failure to account for variability in 
progress through differentiation leads directly to the effects asso-
ciated with Simpson’s paradox. Pseudotemporal cell ordering thus 
decomposes the coarse kinetic trends produced by bulk RNA-Seq into 
distinct, sequential waves of transcriptional reconfiguration.

To identify factors driving myoblast differentiation, we performed 
a cis-regulatory analysis on genes in each pseudotemporal cluster.  
We identified cis-regulatory elements on the basis of DNase I hyper-
sensitive sites in HSMM cells and HSMM-derived myotubes21,  
classified them according to function on the basis of histone marks22 
and annotated them with conserved transcription factor binding sites. 
While downregulated genes were enriched at near-significant levels 
with binding sites for proteins that affect proliferation (for example, 
MAX, E2F and NMYC), nearly all significantly enriched motifs fell 
near upregulated genes. These genes were highly enriched for regula-
tory elements containing binding motifs for 175 transcription factors, 
including many well-known regulators of myogenesis, such as MYOD, 
MYOG, PBX1, MEIS1 and the MEF2 family (Supplementary Fig. 10).  
Some, but not all, of these factors were revealed by a regulatory  
element analysis performed using bulk RNA-Seq data, underscoring  
the power of increased pseudotemporal resolution of single-cell 
analysis (Supplementary Fig. 11). A similar analysis of microRNA 
target sites identified miR-1, miR-206, miR-133 and many others  
as regulators of genes activated during myogenesis (Supplementary 
Fig. 12). Of these, only miR-1 and miR-206 target sites were  
significantly enriched among genes found to be transiently upregu-
lated and then sharply downregulated. This may suggest that miR-1 
and miR-206, which are expressed at an intermediate stage of myob-
last differentiation, may act to strongly suppress a subset of genes 
activated earlier.

Many of the transcription factors implicated by our cis-regulatory 
analysis as governing differentiation had no previously appreciated 
role in muscle development. To test potential functions of these  
factors, we performed an RNA interference–mediated loss-of-function  

Figure 3 Pseudotime ordering of cells 
reveals genes activated or repressed early in 
differentiation, along with potential upstream 
regulators. Left, relative gene expression levels  
were K-medioids clustered. The mean expression 
for each cluster is shown in red, and an example 
gene with a known role in myogenesis from 
each cluster is highlighted in blue. Middle, 
selected Gene Ontology terms associated with 
genes in each cluster. Enrichment scores are 
shown as –log10(q), where q is the significance 
of the enrichment after multiple testing (Online 
Methods). Right, number of transcription factors 
(TFs) with conserved binding site motifs in 
regulatory elements for genes in each cluster. 
Transcription factors are segregated according 
to the function of regulatory elements to 
which they bind. Examples are shown on the 
right, with known myogenic factors in black 
and factors without a known role in muscle 
differentiation in red.
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screen for 11 candidates. Briefly, we infected proliferating myoblasts 
with lentiviruses carrying one of 44 distinct short hairpin RNAs tar-
geting either one of these factors or a mock (non-targeting) control, 
followed by serum switch–induced differentiation for 5 d. We then 
measured the frequency and size of MYH2+ cells by immunofluo-
rescence and automated quantification. Cells infected with two or 
more independent shRNAs targeting MZF1, ZIC1, XBP1  and USF1 
showed significantly altered (FDR < 5%) differentiation kinetics  
(Fig. 4a,b and Supplementary Fig. 13). ZIC1, XBP1 and USF1 
showed significantly altered differentiation kinetics (Fig. 4a,b and 
Supplementary Fig. 13) when depleted with two or more independent  
hairpins (FDR < 5%).

Knockdown of XBP1, USF1, ZIC1 and MZF1 enhanced myotube 
formation, with larger myotubes containing a higher fraction of total 
nuclei than mock shRNA controls (Fig. 4a). Depletion of CUX1, 
ARID5B, POU2F1 and AHR also increased differentiation efficiency, 
albeit less significantly. Whole-well counts of nuclei were similar 
between knockdowns and mock controls, indicating that enhanced 
differentiation was not simply a result of higher initial cell counts or 
increased proliferation (Fig. 4a). With the exception of ZIC1, forced 
overexpression did not substantially alter differentiation kinetics (data 
not shown).

Notably, several of these factors have binding motifs that are highly 
enriched in promoters and enhancers that also have motifs for known 

muscle regulators (Fig. 4b). For example, USF1 motifs are enriched 
in enhancers that also have MYOD motifs. Together, these results 
confirm that the transcription factors identified as possible regulators 
in fact influence myoblast differentiation, and demonstrate the power 
of Monocle for identifying key differentiation genes.

This study demonstrates that Monocle can exploit the inherent 
temporal variability during differentiation to order individual cells 
according to progress without relying on known markers. This pseu-
dotime ordering pinpoints key events in differentiation, such as the 
ID1/MYOG switch, that are masked both by conventional bulk cell 
expression profiling and by single-cell expression profiles ordered 
by time collected. The reordering resolves sequentially activated or 
repressed groups of genes that can be further scrutinized to reveal 
upstream regulators. The temporal resolution offered by hundreds of 
ordered cells might enable future efforts to computationally infer new 
gene-regulatory modules. For example, the enrichment of transiently 
upregulated genes for common miRNA target sites raises the question 
of whether those miRNAs are expressed later, curtailing what would 
have been higher levels of expression. Sequencing-based measure-
ments of small RNAs and mRNAs from the same cell will provide 
answers to such systems-level questions. Moreover, single-cell analysis 
distinguishes cells of interest from contaminating cell types such as 
interstitial mesenchymal cells without experimental isolation that 
might disrupt cell-cell interactions important in the in vivo niche. 
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Figure 4 Loss-of-function screen on selected transcription factors.  
(a) Fraction of nuclei within cells expressing MYH2 (top), whole-well  
area of MYH2 (middle) and nuclei count (bottom) after 4 d of culture in  
DM after viral infection with shRNA for the indicated genes, normalized  
to mock shRNA controls. For each mRNA, four independent shRNA  
were tested and the results of the two with greatest impact on fraction  
of nuclei in MYH2+ cells are reported. Values reported are the average  
of 4 technical replicates of each infection, with significance of changes  
compared to control assessed by two-tailed Student’s t-tests and  
corrected by Benjamini-Hochberg. Error bars indicate 2 s.d. from the  
mean. *Significant difference with respect to mock control at an  
FDR < 5%. (b) Co-occupancy scores of conserved transcription factor  
binding site motifs in enhancers (green) and promoters (purple) identified  
by ENCODE. Scores were calculated as the log10-transformed P values  
from hypergeometric tests after Bonferroni correction for multiple testing  
(see Online Methods). (c) Inhibitors might prevent premature myoblast  
differentiation by one of two mechanisms.
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Because our approach requires no a priori knowledge of marker genes 
to reorder cells, it is suitable for discovering regulators and markers 
of poorly characterized temporal processes.

We identified eight previously unappreciated transcription factors 
that influence the course of myoblast differentiation, demonstrating 
the principle of pseudotemporal analysis and expanding the catalog 
of regulators in this well-studied system. Several of the eight factors 
reported here may normally repress differentiation by competing with 
promyogenic factors for these regulatory elements. Alternatively, these 
inhibitors may co-occupy regulatory elements with promyogenic  
factors, preventing transactivation of their targets (Fig. 4c). Previous 
studies in other contexts provide mechanistic data supporting both 
of these models. USF1 inhibits MyoD autoactivation in Xenopus 
by competing with MyoD at the MyoD promoter through an  
alternative E-box23. Our results suggest that USF1 may repress a broad 
array of targets via E-box competition. CUX1 represses targets in 
several developmental contexts through binding site competition24. 
XBP1 was recently reported to inhibit myoblast differentiation in 
mice25, potentially through regulatory element competition. Further 
experiments in HSMM cells and myoblasts from other anatomic sites 
will be needed to confirm the mechanism of these factors.

While positive regulators of myogenesis have been well char-
acterized, only a handful of inhibitors have been identified. The 
eight inhibitors reported here may shed light on how the balance of  
proliferation and differentiation is maintained during development 
and regeneration. Ordering the expression profiles of individual  
cells by biological progress is thus a useful tool for studying cell  
differentiation, and it could in principle be used to map regulatory 
networks that govern a much wider array of biological processes.

MeTHoDS
Methods and any associated references are available in the online 
version of the paper.

Accession codes. GEO: GSE52529. Monocle is available in 
Supplementary Source Code and at http://monocle-bio.sourceforge.
net/.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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oNLINe MeTHoDS
The single cell ordering problem. As cells differentiate, they undergo a proc-
ess of transcriptional reconfiguration, with some genes being silenced and 
others newly activated. While many studies have compared cells at different 
stages of differentiation, examining intermediate states has proven difficult for 
two reasons. First, it is often not clear from cellular morphology or established 
markers what intermediate states exist between, for example, a precursor cell 
type and its terminally differentiated progeny. Moreover, two cells might tran-
sit through a different sequence of intermediate stages and ultimately converge 
on the same end state. Second, even cells in a genetically and epigenetically 
clonal population might progress through differentiation at different rates  
in vitro, depending on positioning and physical contact with neighboring cells. 
Looking at average behavior in a group of cells is thus not necessarily faithful 
to the process through which an individual cell transits.

Here, we describe an unsupervised algorithm, Monocle, that computation-
ally reconstructs the transcriptional transitions undergone by differentiat-
ing cells. It orders a mixed, unsynchronized population of cells according to 
progress through the learned process of differentiation. Because the popula-
tion may actually differentiate into multiple separate lineages, Monocle allows 
the process to branch, and it can assign each cell to the correct sublineage. It 
subsequently identifies genes that distinguish different states and genes that 
are differentially regulated through time. Finally, it performs clustering on all 
genes to classify them according to kinetic trends. The algorithm is inspired 
by and extends one proposed by Magwene et al. to time-order microarray 
samples10. Monocle differs from previous work in three ways. First, single-cell 
RNA-Seq data differ from microarray measurements in many ways, and so 
Monocle must take special care to model them appropriately at several steps 
in the algorithm. Second, the earlier algorithm assumes that samples progress 
along a single trajectory through expression space. However, during cell differ-
entiation, multiple lineages might arise from a single progenitor. Monocle can 
find these lineage branches and correctly place cells on them. Finally, Monocle 
also performs differential expression analysis and clustering on the ordered 
cells to help a user identify key events in the biological process of interest.

Consider the gene expression profile of each cell captured in the experiment 
as a vector in Rd , where d is the number of genes detectably measured in the 
experiment. In the case of RNA-Seq, d might be equal to the number of genes 
in the organism’s transcriptome. In a single-cell qPCR experiment, d might 
be 48 genes or fewer. The endpoints of differentiation will be separated in 
this space, and cells transiting between these endpoints might proceed along 
an arbitrarily complex (nonlinear) path (or paths). Typically, we do not know 
where the endpoints of differentiation reside in this space or what the path 
between them should look like. Moreover, the expression profile from each cell 
will contain some measurement error (for example, from sequencing-based 
sampling error), and mRNA levels will vary stochastically due to transcrip-
tional noise, so cells will ‘travel’ through expression space in a noisy way.

We wish to (i) identify the (two or more) endpoints of the biological proc-
ess, (ii) learn the shape of the path(s) between them, and (iii) accurately place 
cells along this path. The first two challenges together are referred to as the 
curve reconstruction problem. Formally, consider differentiation as a continu-
ous, smooth function 


…f s x s x s x sd( ) [ ( ), ( ), , ( )]= 1 2 . Each point in the image 

of the function is the state of the cell at s, which can be thought of as progress 
through the biological process, rather than time. That is, two cells might 
execute exactly the same sequence of changes as they differentiate but take 
different amounts of time to do so. A sample from 


f  at progress s is a random 

vector 
  
r d( ) ( ) ( )s f s s0 = +  , where 


d ( )s  is a vector describing biological and 

technical noise. An experiment data set consists of a finite set of samples  
V s s sn= { ( ), ( ), , ( )}

 
…


r r r0 1 .
Estimating the geometry of 


f  has been referred to as the curve reconstruc-

tion problem, and two classes of approaches have been proposed. The first 
uses polygonal reconstruction, which approximates the smooth curve with 
polygonal segments connecting the elements of V. The second, principal curve 
reconstruction, directly fits a smooth curve through V. While we consider the 
latter a promising avenue for ordering expression profiles captured by single-
cell RNA-Seq, we focus on the former approach, as it extends very naturally 
to settings where more than two endpoints exist in the data.

A polygonal reconstruction of 

f  (which is assumed to be smooth and twice-

differentiable) from V is a graph that connects every pair of samples that are 

adjacent on 

f  and no others. Adjacent points are those for which there is no 

point in V between them on the curve 

f . In other words, there is no point of 

intermediate progress in V between adjacent points. If a sufficient number of 
points on 


f  are sampled without error, an accurate polygonal reconstruction 

can be achieved by finding a traveling salesperson path (TSP) or a minimum 
spanning tree (MST) through V26–28.

We now state the cell ordering problem formally. Suppose 

f s( ) is a vector-

valued function parameterized by progress s through a biological process and 
is sampled at a finite number of points with error. Let V si=


r( ) be the set of 

samples. Then:
Definition 1. A permutation π of the index set {1, 2, …, n} is an ordering of 

the points in V by progress if p p( ) ( )i j s si j ⇒  for all i,j in the index set.
The ordering problem is to find the progress-ordering permutation, π, given 

the data V (ref. 1).
An order of cells allows us to say that one cell precedes another as differ-

entiation progresses, but it does not directly tell us how similar two cells are 
in terms of the process. Assuming differentiation follows a one-dimensional 
path embedded in a d-dimensional metric space, simply taking the distance 
in that space between two cells would be like saying that the distance between 
Hong Kong and New York is straight-line distance through the center of the 
Earth. Just as we must measure the distance New York to Hong Kong along 
the surface of the Earth (that is, the great circle, or geodesic distance), we must 
measure the distance between two cells along 


f . This leads us to a definition 

for the distance between two cells in terms of differentiation:
Definition 2. Given a permutation π that orders cells by progress, specify-

ing that s si j , the pseudotime scale of the biological process is a function 
y :V →R. Denoting si − 1 as the cell that precedes si and s0 as the element of  
V that is strictly preceded by no other, we construct ψ as

y
y r rt i
t i i i

s
i

s s s i
( )

( ) || ( ) ( ) ||
=

=

+ − >




 − −

0 0

01 1

if

if
 

That is, the ordering π induces a one-dimensional measure of progress in  
terms of transcriptional state during differentiation. This ‘pseudotemporal’  
scale of differentiation is numerically arbitrary and will of course vary  
from experiment to experiment, but nevertheless is useful for downstream 
analysis.

Dimensionality reduction. Ordering cells by progress through a biological  
process can be formulated as the problem of finding a one-dimensional  
function 


f s( )  embedded in Rd . Although d might be the number of genes 

in the transcriptome, this need not be the case. It might make sense to  
ignore some subset of genes or even augment the space with some other 
quantitative dimensions based on per-cell measurements from another  
assay. Moreover, expression measurements for many genes will show large 
covariance with other genes in the experiment. Thus, it may make sense to 
reduce the dimensionality of the space before ordering the cells. In practice, 
dimensionality reduction not only can reduce the variability in pairwise  
cell-to-cell distance, it can also simplify interpreting cellular trajectories 
through expression space.

Monocle uses independent component analysis (ICA) to reduce the dimen-
sionality of the expression data before ordering the cells. ICA was originally 
developed as a means of separating a set of mixed signals (for example, cap-
tured by a collection of microphones) into (statistically) independent sources. 
It has been widely adopted for image analysis and other types of signal process-
ing tasks. The usefulness of ICA is often explained as a way of solving the 
‘cocktail party problem’, where one has placed n microphones around the room 
to listen to several conversations among k cocktail partygoers. Each of the 
microphones will pick up a mixture of the conversations, and the signal recov-
ered from each will vary depending on where in the room the microphone is 
relative to the partygoers. By separating the n mixed signals into k independent 
components, ICA aims to recover the k individual voices. If k is smaller than 
n, then ICA has also reduced the dimension of the original data.

Reducing dimensionality of single-cell expression data amounts to describ-
ing each cell in terms of abstract sources, which are hidden variables that 
describe a cell’s state but which are reflected in observed gene expression 
values. More formally, the expression measurements of n genes in m cells can 
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be represented as an n × m matrix x. If those expression measurements are 
generated by a linear combination of k source signals, we can write

S Ax=

where S is a k × m matrix and A is an invertible weight matrix that transforms 
x into S.

In practice, a single-cell RNA-Seq experiment will detect expression for  
only a subset of genes in each cell; others will be detectably expressed but  
far too noisily or in too few cells to reliably use in downstream analysis.  
It is useful to preselect the genes that will be used for ordering the cells.  
One might select genes that are known markers of progress through differ-
entiation, although this would undoubtedly introduce substantial bias into 
the analysis. A better approach might be to simply select all genes detectably 
expressed above a certain threshold in a certain fraction of cells. One might 
also only include genes that vary over a sufficiently large dynamic range,  
as including genes that do not appreciably change likely would just increase 
noise in the analysis.

We have found that selecting genes that are differentially expressed between 
groups of cells collected at different real times allows robust ordering (see 
“Differential expression analysis”, below). However, in some experiments this 
might not be available (for example, because all the cells came from a single 
tissue or time point). In these cases, we recommend selecting genes on the 
basis of a minimum expression level and a minimum level of variance.

Ordering cells by progress. Monocle orders cells by progress through a bio-
logical process, resulting in an induced ‘pseudotime’ scale describing that 
process in transcriptional terms. The algorithm used here extends from one 
introduced by Magwene et al.10, although there are some departures from 
their approach that cater to the nature of single-cell RNA-Seq data. We briefly 
outline the approach below.

Cells are described as points in Rd, which might be a reduced expression 
space as described in the previous section. We first construct a weighted com-
plete graph, where vertices represent cells and edges are weighted by the dis-
tance in Rd  between the connected cells. Next, the algorithm finds the MST 
on the complete graph. If this graph has no branches, the algorithm returns 
the MST as the polygonal reconstruction of the biological process path 


f s( ). 

Otherwise, the algorithm uses the MST to order the cells.
Branched trees could result from one of two phenomena. First, an MST on 

the cells with branches might result from a population of cells that is transit-
ing along two or more independent biological (sub)processes. For example, 
undirected differentiation of human embryonic stem cells would produce 
cells of all three germ layers—ectoderm, mesoderm and ectoderm—as well 
as intermediate states along the way. We address this case in the following 
section. Alternatively, the branches might simply result from biological  
or technical noise, representing small deviations from a single biological  
process. In this case, we need to find an appropriate place for such cells in  
the pseudotemporal ordering.

Monocle deals with branches due to noise by constructing a PQ tree29, 
which captures the set of paths through the cells that constitute good orderings. 
A PQ tree is a rooted, ordered tree in which ordered elements as represented 
as leaves and internal nodes encode legal orderings. Internal nodes are of 
one of two types: Q nodes, whose children are ordered (albeit possibly in 
reverse), and P nodes, whose children are not. Monocle follows the approach 
of Magwene et al.10 to construct a PQ tree that compactly represents good 
orderings of the cells:

1.  For a set of cells, calculate the MST.
2. Find the longest path through the MST, called its diameter path.
3. Create a PQ tree with a single empty Q node, QMain.
4. Vertices on the diameter path with degree greater than 2 are called  

indecisive. Find the indecisive backbone of the diameter path, the longest  
continuous subset of the vertices of the diameter path for which both 
endpoints are decisive.

5. Moving along the indecisive backbone, make each decisive vertex a child 
of QMain, so the decisive vertices are ordered by the Q node.

6. For each indecisive vertex, create a new P node, attach it to QMain, and 
make the children of the indecisive vertex children of the new P node.

For the indecisive nodes newly attached as children of P nodes, recursively 
apply the whole algorithm, creating new Q nodes for each child in the MST 
of each indecisive vertex, and so forth.

The PQ tree encodes a family of orderings, and specific orderings can be 
extracted quickly. Children of Q nodes will appear as a subsequence consistent 
with their order in their parent Q node. In particular, vertices along the first 
diameter path, which ideally hold most of the cells, will appear in that order. 
However, small branches off of this path, which appear in P nodes, might 
be permuted in ways that result in discontinuities in the expression space. 
Similarly, children of Q nodes might need to be emitted in reverse order to 
make smooth transitions in the final ordering of cells. Magwene et al.10 do not 
address this situation, preferring to emit the PQ tree itself. Monocle always 
emits an ordering of cells, and thus it exhaustively searches orderings encoded 
by the PQ tree to find one that obeys its constraints and minimizes the total 
distance traveled by the resulting polygonal reconstruction in the embedding 
geometry Rd , beginning at one end of the diameter path of the full MST. While 
this might result in superpolynomial running time and memory, in practice 
with real data, this procedure takes only a few seconds and small amount of 
RAM on a laptop because the number of cells in P nodes is typically very small 
relative to the cells in Q nodes.

Monocle thus emits an ordering of the cells that relies on the MST to ‘sketch’ 
the basic shape of the polygonal reconstruction and uses the PQ tree to handle 
small, noise-driven branches.

Per-cell expression profiles were calculated in this study using the Tuxedo 
suite of tools30. The reads for each cell were mapped with TopHat31 2.0.9 and 
Bowtie32 2.0.6 against build 19 of the human genome, downloaded through 
the UCSC genome browser. TopHat was provided with GENCODE33 gene 
annotations (build version 17). Mapped reads were analyzed with Cuffdiff34 2.2 
to generate per-cell expression profiles. Bulk RNA-Seq libraries were mapped 
using an identical workflow and analyzed with Cuffdiff 2.2 to generate dif-
ferential gene expression calls. Downstream heatmaps and clustering were 
performed with the CummeRbund (http://compbio.mit.edu/cummeRbund/) 
R package.

The myoblast expression profiles were ordered using Monocle. Expression 
space was reduced to two dimensions using the fastICA17 package. The  
initial space used as input before the ICA reduction was defined by a  
subset of genes, selected as follows. First, genes detectable in fewer than  
50 cells at or above FPKM 1 were discarded. Next, the remaining genes were 
analyzed for differential expression using a Tobit-family35 generalized linear 
model (GLM) through the VGAM package in R. A minimum FPKM value 
of 0.1 was used as the censoring threshold for the Tobit model. This analy-
sis reported genes that were significantly differentially expressed between 
groups of cells harvested on different days. Only genes significant at an FDR 
< 0.01 (after Benjamini-Hochberg correction) were kept for ICA analysis. 
The input space for ICA was taken to be the standardized, log-transformed 
FPKM values of these genes. These selection criteria were picked to exclude 
genes that contribute only Gaussian noise to the input for ICA. That is, we 
aimed to provide ICA with genes that were (i) reliably and accurately measured 
by RNA-Seq and (ii) sufficiently dynamic over differentiation. We explored 
alternative means of selecting genes for ICA reduction, such as selecting on 
the basis of simple dynamic range or variance thresholds, and these methods 
produced qualitatively similar, but less accurate, orderings. Monocle orders 
cells on the basis of proximity in expression space. Intercell distances were 
calculated as the Euclidean distance in two-dimensional ICA space. These 
distances were used to construct the MST. The MST was then used to order 
the cells, allowing two distinct lineages to arise from the initial population of 
cells as described below.

Identifying branches in a biological process. During differentiation,  
progenitor cells make a series of decisions that restrict and specify which 
terminal cell type they will ultimately become. Many progenitors can generate 
multiple lineages, and in the extreme case, embryonic stem cells and induced 
pluripotent stem cells can produce any cell type found in the organism. In 
a single-cell RNA-Seq experiment, cells transiting through differentiation 
might be captured at these decision points. Monocle aims to reconstruct a 
branched process in the embedding geometry that recapitulates the subpaths 
cells take. This assumes that transitions through decision points are smooth 
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and continuous in the embedding geometry, or rather, that transitions from 
progenitor to one of several committed cell types is marked by a smooth shift 
in transcriptional state, as opposed to an instantaneous shift to a distant part 
of the embedding geometry.

To handle this situation, we must refine our definitions of several key ideas. 
Differentiation must be expressed not as a single smooth, continuous vector-
valued function, 


f s( ), but rather as a piecewise smooth, continuous one. That 

is, the process begins with some initial path through the embedding geometry 
defined as before but reaches a certain point and splits into two or more seg-
ments. We write this function as 


f b s( , ), where b selects a branch segment in the 

process and s is the progress along that branch. The initial segment is denoted 
b0, and we denote the first cell on any branch bi as having progress (bi, s0). A 
lineage is defined as an ordered set of branches bi such that b bi j≺ i,j and, if 
bi precedes and is adjacent to bj, then the left open interval of 


f b sj( , ) begins 

at 

f b si n( , ), where sn is the last state on the branch bi.
An ordering of cells from a branched process can be represented as a 

tree rooted near 

f b s( , )0 0 . In the unbranched case, an ordering means that 

p p( ) ( )i j s si j ⇒ . For the branched case, we construct a tree on the index set, 
where if element i of the index set is the parent of j in the directed acyclic graph 
(DAG), then

 
f b s f b sx i y j( , ) ( , ) . If i has only a single child in the tree, then  

bx = by. If, however, i has multiple children, then b bx y≺ , and the left open interval  
of 

f b sy( , ) begins at 


f b sx i( , ).

Given the above definition for a branched ordering, the notion of pseudo-
time for a branched process can be readily updated as well:

y
y r rt x i
t x i x i

b s
x i

b s b s
( , )

,

( ( , )) || (( , )) (
=

= =

+ −

0 0 0if

Parent Par
 

eent otherwise( , )) ||b sx i







where Parent(b,s) denotes the parent of cell (b,s) in the ordering tree.
Each Q node is the parent of cells along an indecisive backbone that fixes 

their order in the embedding geometry. To build a branched ordering of the 
cells, each time Monocle adds a Q node to the tree, it also records the length 
of the corresponding indecisive backbone in the MST. When the PQ tree is 
complete, Monocle selects the k Q nodes with the longest indecisive backbones, 
where k is selected by the user and corresponds to the number of terminally 
differentiated cell types in the experiment. From this list, Monocle selects the 
Q node with the shortest backbone, prunes the corresponding subtree from 
the MST, and orders its cells using the above exhaustive procedure. Monocle 
then does the same for the remaining selected Q nodes.

The algorithm then reassembles the ordered subsets of the cells with a 
depth-first traversal of the PQ tree. The Q node with the longest backbone 
will always be QMain, the first one created. The second longest backbone will be 
found branching from the longest in the MST, and so on. The root cell (b0,s0) 
of the ordering tree is the first cell in the ordering of the longest backbone. The 
remaining cells under QMain are added in order, until the indecisive node that 
created the second longest backbone is reached, at which point the ordering 
tree branches, creating b1 and b2, with cells on the second longest backbone 
added as children in one branch, and the remaining cells on the longest back-
bone added to the other. This procedure is applied, creating branches in the 
ordering tree whenever one of the k longest backbone Q nodes is encountered, 
until all the cells have been added to the ordering tree.

Differential expression analysis. Monocle can identify genes and transcripts 
that are differentially expressed across distinct cell types or that change sig-
nificantly as a function of pseudotime. Generalized additive models (GAMs) 
relate one or more predictor variables to a response variable as

g E Y f x f x f xm m( ( )) ( ) ( ) ( )= + + + +b0 1 1 2 2 

where Y is a response variable, such as a particular gene’s expression level, and 
the xi’s are predictor variables36. The function g is a link function, typically the 
identity or log function. The fi’s are nonparametric functions, such as cubic 
splines or some other smoothing function. Generalized additive models are 
similar to generalized linear models but allow testing of variables in response 
to a numerically estimated trend in the predictors, alleviating the burden of 
specifying their distribution. While this necessitates some approximations 
in downstream testing, it has proven to be highly effective in many settings, 

particularly when one wishes to model the response variable as a function of 
both categorical and continuous predictors.

Monocle models each gene’s expression level across cells using a Tobit 
model35. That is, each gene’s observable (log-transformed) expression  
level Y depends on a latent variable Y*:

Y
Y Y

Y
=

>

≤







* *

*

if

if

l

l l

where λ is a detection threshold. The latent variable Y* depends on the 
variables xi, which might express the day on which each cell was collected, 
Monocle’s pseudotime value for each cell, and so forth. The parameter λ is a 
user-specified value (FPKM = 0.1 by default).

Monocle’s generalized additive model is thus

E Y s b st x i( ) ( ( , ))= +y e

where y t x ib s( , ) denotes the assigned pseudotime of a cell and s is a cubic 
smoothing function with (by default) three effective degrees of freedom.  
The error term ε is normally distributed with a mean of zero. Testing for 
differential expression is performed with an approximate χ2 likelihood ratio 
test. The GAM and associated testing functions are provided through the 
VGAM package37.

Monocle also supports testing for differential expression between groups 
of cells collected on different days or otherwise categorically labeled in  
the experiment. In these tests, the GAM simply uses the categorical labels as 
predictor variables, with no smoothing.

In this study, pseudotemporally ordered myoblasts were analyzed for 
dynamically regulated genes using a GAM that described log-transformed 
FPKM values as dependent variables from the Tobit family, which varied as 
a smooth function of pseudotime. Smoothing was performed with a cubic 
spline with three effective degrees of freedom. A randomly selected set of  
15 genes was manually assessed for goodness of fits using standard criteria (for 
example, Q-Q plots) and confirmed to be well-fit by both the pseudotemporal 
and day-collected Tobit models. Significance of pseudotime dependency was 
performed with an approximate likelihood ratio test (via the VGAM lrtest() 
function) against the reduced model of no pseudotime dependence. In all 
tests, genes with an FDR < 0.05 after Benjamini-Hochberg correction were 
considered pseudotemporally regulated.

Bulk RNA-Seq libraries were analyzed with Cuffdiff 2 to call differentially 
expressed genes. Bulk RNA-Seq libraries met the widely used assumption of 
increasing fragment count overdispersion as a function of increasing expres-
sion. Cuffdiff 2, used to assess changes in bulk RNA-Seq libraries, explicitly 
models overdispersion and includes it in statistical testing.

Clustering genes by pseudotemporal expression pattern. Once Monocle has 
fit a GAM for each gene, these models can be used to predict smooth response 
curves as a function of pseudotime. Standardizing these curves allows for 
efficient K-medioid clustering of all genes in a data set across pseudotime. 
Pairwise distances between genes x and y are calculated as

d x y
x y

( , )
,

= −1
2

r

where ρx,y indicates the Pearson correlation of their response curves. Clusters 
correspond to genes that follow the same relative kinetic trends. Clustering 
based on the GAM response curves, rather than the raw data, produces, in 
practice, more coherent clusters with a lower root mean squared error with 
respect to the medioids and sharper kinetic trends, allowing analysis of a more 
diverse set of patterns.

In this study, clustering analysis was carried out on all detectably expressed 
genes, regardless of significance of pseudotemporal regulation. K-medioid 
clustering was performed on the predicted response of genes pseudotime GAM 
after log-transformation and standardization. Clustering was performed using 
the PAM package in R. Six clusters were generated, as this was the largest K 
that produced qualitatively distinct clusters without redundancy.

Primary human myoblast culture and treatment. Human skeletal  
muscle myoblasts (HSMM) derived from quadriceps biopsy (Lonza, catalog 
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#CC-2580, lot #257130: healthy, age 17, female, of European ancestry, body 
mass index 19) were expanded in 10% FBS SkGM-2 (Lonza) and differenti-
ated for the indicated time points upon switch to MEM-alpha supplemented 
with 2% horse serum (Lifetech). All procedures were performed using HSMM 
within five passages from explant. Cells were verified to be mycoplasma  
negative before data collection (Promocell, catalog #PK-CA91-1024).

For HSMM RNAi experiments, individual shRNA hairpins (pLKO.1  
backbone) for the transcription factor under study were obtained as lenti-
viral particles in supernatant from The RNAi Consortium (Broad Institute 
RNAi platform). Lentiviral particle production and titering were performed 
as previously described38. HSMM were infected in growth medium, expanded 
and collected after puromycin selection for knockdown validation, for the 
indicated time points for gene expression and immunofluorescence analyses. 
Sequences for shRNAs are listed in Supplementary Table 1.

Immunofluorescence analyses were performed on PFA-fixed plates, with 
antibodies raised against muscle MYH2 (clone MF-20, E-bioscience), MEF2C 
(Abcam cat. ab79436) and phospho-histone H3 (Millipore cat. 06570) accord-
ing to Cacchiarelli et al.39. Whole well imaging was performed together with 
Hoechst staining using a Celigo S cytometer (Brooks Automation). The 
resulting images were analyzed with ImageJ to obtain information about total 
number of cells or nuclei, fractions of nuclei in MYH2- or CD13-positive cells, 
and total MYH2-positive cell area. All immunofluorescence experiments were 
performed in technical quadruplicate. Significance of changes in response 
to knockdown of target genes with respect to luciferase control was assessed 
with a pooled-variance t-test, with similar variance between control and target 
infections.

Cell capture and mRNA sequencing. HSMM in either growth or differen-
tiation medium were dissociated, washed and resuspended in GM or DM 
containing 0.1 U/µl of RNaseOUT (Lifetech). Each time point was collected 
in three independent biological replicates for regular mRNA sequencing, while 
for single-cell mRNA sequencing the independent replicates were pooled in 
equal amounts.

For bulk RNA-Seq libraries, total RNA was extracted with Trizol and mRNA 
libraries were produced starting from 100 ng total RNA using the TruSeq 
mRNA-Seq library kit (Illumina) according to manufacturer’s instructions. 
Briefly, mRNA library construction consisted in a first step of RNA poly(A) 
selection, followed by salt-mediated fragmentation. The fragmented RNA was 
then converted to a double-stranded cDNA by retrotranscription and second 
DNA strand synthesis. End-repair and 3′-adenylation were then performed to 
produce cDNA termini compatible for ligation of 5′ and 3′ adapters. Finally, 
11–14 PCR cycles were performed to amplify the obtained libraries. Stringent 
DNA purification with Agencourt AMPure XP magnetic beads (Beckman 
Coulter) was performed after each step in the protocol, in particular twice 
after adaptor ligation and twice after PCR reaction, to minimize contami-
nation by adapters in the library. Library QC and quantification were per-
formed using Bioanalyzer DNA High Sensitivity (Agilent) and qubit High 
Sensitivity (Lifetech) assays, respectively. Sample size for conventional, bulk 
RNA-Seq libraries was fixed at 3 biological replicates, in accord with previous  
reports34 that this design is sufficient to capture the vast majority of differ-
entially expressed genes for in vitro differentiation experiments involving 
homogeneous starting cell populations.

For single-cell mRNA sequencing, dissociated cells were captured and  
processed with the C1 Single-Cell Auto Prep System (Fluidigm) following 
manufacturer’s protocol 100-5950. Starting with a suspension of cells at a 
concentration of approximately 250 cells/µl, up to 96 single cells are captured 
in each C1 microfluidic device. In this study, we used one C1 capture chip at 
0, 24, 48 and 72 h after switching to differentiation medium, for a total of four 
independent captures. After imaging with a microscope to identify which 
sites have captured a single cell, processing of the cells occurs within the C1 
instrument to perform the steps of cell lysis, cDNA synthesis with reverse  
transcriptase, and PCR amplification of each cDNA library. The cDNA  
synthesis and PCR use reagents from the SMARTer Ultra Low RNA Kit 
for Illumina Sequencing (Clontech 634936). The SMARTer chemistry uses 
a strand-switching mechanism so that both the first and second strands  
of cDNA are synthesized in a single reaction. After harvest from the C1  
microfluidic device, each cDNA library is subjected to tagmentation (simultaneous  

fragmentation and tagging with sequencing adapters) using the Nextera XT 
DNA Sample Preparation Kit (Illumina FC-131-1096) as described in Fluidigm 
protocol 100-5950. PCR amplification of the tagmented cDNA uses Index 
Primers from the Nextera XT DNA Sample Preparation Index Kit (Illumina 
FC-131-1002). After PCR, the cDNA libraries from individual cells are pooled 
and purified using AMPure XP beads (Agencourt Bioscience Corp A63880) 
as described in Fluidigm protocol 100-5950.

All libraries (bulk and single-cell) were sequenced using 100-bp paired end 
sequencing on a HiSeq 2500 (Illumina), generating 10–20 million reads for 
each TruSeq library and 4 million reads for each C1 single cell library. Libraries 
that contained fewer than 1 million reads or for which less than 80% of frag-
ments mapped to nonmitochondrial protein coding genes were excluded.

Benchmarking robustness of Monocle. Cross-validation of Monocle’s order-
ing and differential analysis routines was performed as follows. First, subsets 
of the cells of varying size were selected at random, to profile performance 
for an experiment with 15% of the cells, 25%, 50% and so on. Each subset 
was independently ordered using the same procedure as described above. 
That is, genes were assessed for differential expression between cells in the 
subset collected in GM (day 0) and DM (days 1, 2 and 3). Genes significant at  
FDR < 1% were used to order the subset. The pseudotime values for these  
cells ordered by themselves were compared to the values when they were 
ordered as part of the full data set by Pearson correlation. Similarly, the overall 
concordance of pseudotime ordered expression values for the panel of markers 
genes from Supplementary Figure 6 was calculated as the Pearson correla-
tion of each gene’s expression values under the two orderings. The correlation 
values for each gene were then averaged to calculate an overall concordance 
score for the subset. Finally, the genes were analyzed for statistically significant 
pseudotime-dependent changes in expression using the methods described 
above. Genes marked as significantly dynamically regulated when consider-
ing all the cells (as shown in Supplementary Fig. 6) were taken to be the true 
positives. The true positive, false positive, true negative and false negative 
calls for the subset were calculated and used to compute precision and recall 
values for each subset.

qPCR expression analysis. Total RNA from the HSMM differentiation time 
course and shRNA treatments was extracted with RNeasy (Qiagen). qPCR 
analyses to assess knockdown efficiency of shRNA treatments were performed 
by retrotranscribing 50 ng of total RNA with Superscript VILO (Lifetech) 
followed by SYBR Green amplification of 1–2 ng of the resulting cDNA 
(Roche). qPCR expression values were analyzed with PCR Miner40. shRNA 
knockdowns of target genes were compared with nontargeting (luciferase) 
control to calculate knockdown efficiency. Primers for qPCR assays are listed 
in Supplementary Table 2.

Regulatory sequence analysis. Regulatory regions of the genome were  
defined as ENCODE DNase I–hypersensitive ‘hotspots’21, downloaded 
through the ENCODE data portal of the UCSC genome browser. The “HSMM” 
and “HSMMtube” DNase I HS tracks were merged for further analysis using 
bedtools41. These regions were assigned a probable function by overlapping 
them with predicted regulatory roles produced by ChromHMM22 for HSMM 
cells, which integrates ChIP-Seq histone modification data. Thus each hyper-
sensitive site was classified as a promoter element, an active enhancer, an 
insulator and so on.

Competitive gene set tests. A competitive gene set test assesses the hypothesis 
that a given group of genes is ranked more highly (or less highly) than expected 
by chance in a larger list. All competitive gene set tests were performed with 
the geneSetTest() function of the limma package in R42. This function takes a 
ranked list of all genes along with a specified subset of genes and performs a 
Wilcoxon rank-sum test on the ranks of the subset. All P values are corrected 
for multiple testing according to the number of gene sets tested.

Transcription factor binding analysis. HSMM regulatory sequences were 
mined for transcription factor binding site enrichment by overlapping them 
with the “conserved transcription factor binding site” track available through 
UCSC. The regulatory elements and corresponding binding sites were then 
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associated with their nearest gene using the closestBed utility of the bedtools 
package to create a group of genes potentially regulated by each transcription 
factor. These gene sets were then used in competitive gene set tests as described 
above to identify transcription factors whose potential targets are, for example, 
more highly enriched in a given pseudotemporal cluster than expected by 
chance under the null hypothesis.

Transcription factor co-occupancy scores were derived by counting the 
number of regulatory regions (for example, enhancers active in HSMMs) in 
which both factors have binding sites. These co-occupancy counts were then 
assessed for statistical significance by hypergeometric tests. The P values for 
these tests were corrected for multiple testing according to the number of 
pairs of transcription factors assessed, log-transformed and reported as the 
co-occupancy score. Multiple testing correction by Bonferroni was used to 
control for positive correlation between co-occupancy scores of two pairs of 
factors where one factor is the same.
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