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INTRODUCTION: A reference atlas of human cell
types is a major goal for the field. Here, we set
out to generate single-cell atlases of both gene
expression (this study) and chromatin acces-
sibility (Domcke et al., this issue) using diverse
human tissues obtained during midgestation.

RATIONALE: Contemporary knowledge of the
molecular basis of in vivo humandevelopment
mostly derives from a combination of human
genetics, in vivo investigations of model or-
ganisms, and in vitro studies of differentiating
human cell lines, rather than through direct
investigations of developing human tissues.
Several challenges have historically limited
the study of developing human tissues at the
molecular level, including limited access, tissue
degradation, and cell type heterogeneity. For
this and the companion study (Domcke et al.,
this issue), we were able to overcome these
challenges.

RESULTS:We applied three-level single-cell com-
binatorial indexing for gene expression (sci-RNA-
seq3) to 121 human fetal samples ranging from

72 to 129 days in estimated postconceptual age
and representing 15 organs, altogether profiling
4 million single cells. We developed and applied
a framework for quantifying cell type specificity,
identifying 657 cell subtypes, which we prelimi-
narily annotated based on cross-matching to
mouse cell atlases.We identified and validated
potentially circulating trophoblast-like and
hepatoblast-like cells in unexpected tissues. Pro-
filing gene expression in diverse tissues facilitated
the cross-tissue analyses of broadly distributed
cell types, including blood, endothelial, and
epithelial cells. For blood cells, this yielded a
multiorgan map of cell state trajectories from
hematopoietic stem cells to all major subline-
ages. Multiple lines of evidence support the
adrenal gland as a normal, albeit minor, site
of erythropoiesis during fetal development. It
was notably straightforward to integrate these
human fetal data with amouse embryonic cell
atlas, despite differences in species and devel-
opmental stage. For some systems, this essen-
tially permitted us to bridge gene expression
dynamics from the embryonic to the fetal stages
of mammalian development.

CONCLUSION: The single-cell data resource
presented here is notable for its scale, its fo-
cus on human fetal development, the breadth
of tissues analyzed, and the parallel gener-
ation of gene expression (this study) and chro-
matin accessibility data (Domcke et al., this
issue). We furthermore consolidate the tech-
nical framework for individual laboratories to
generate and analyze gene expression and
chromatin accessibility data from millions
of single cells. Looking forward, we envision
that the somewhat narrow window of mid-
gestational human development studied here
will be complemented by additional atlases
of earlier and later time points, as well as
similarly comprehensive profiling and inte-
gration of data from model organisms. The
continued development and application of
methods for ascertaining gene expression
and chromatin accessibility—in concert with
spatial, epigenetic, proteomic, lineage history,
and other information—will be necessary to
obtain a comprehensive view of the temporal
unfolding of human cell type diversity that
begins at the single-cell zygote. An interactive
website facilitates the exploration of these
freely available data by tissue, cell type, or
gene (descartes.brotmanbaty.org).▪
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A human cell atlas of fetal gene expression enables the exploration of in vivo gene expression across diverse cell types. We used a three-level combinatorial
indexing assay (sci-RNA-seq3) to profile gene expression in ~4,000,000 single cells from 15 fetal organs. This rich resource enables, for example, the identification and
annotation of cell types, cross-tissue integration of broadly distributed cell types (e.g., blood, endothelial, and epithelial), and interspecies integration of mouse embryonic and
human fetal cell atlases. PCR, polymerase chain reaction.
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The gene expression program underlying the specification of human cell types is of fundamental interest.
We generated human cell atlases of gene expression and chromatin accessibility in fetal tissues. For
gene expression, we applied three-level combinatorial indexing to >110 samples representing 15 organs,
ultimately profiling ~4 million single cells. We leveraged the literature and other atlases to identify
and annotate hundreds of cell types and subtypes, both within and across tissues. Our analyses focused
on organ-specific specializations of broadly distributed cell types (such as blood, endothelial, and
epithelial), sites of fetal erythropoiesis (which notably included the adrenal gland), and integration
with mouse developmental atlases (such as conserved specification of blood cells). These data represent
a rich resource for the exploration of in vivo human gene expression in diverse tissues and cell types.

T
o date, most investigations of human de-
velopment have been anatomical or his-
tological in nature (1–3). However, it is
clear that variation in the genetic and
molecular programs unfolding within

cells during development can cause disease.
For example, most Mendelian disorders have
a major developmental component (4). More-
common and often devastating developmental
conditions to which genetic factors substan-
tially contribute include congenital heart de-
fects, other birth defects, intellectual disabilities,
and autism (5).
Several challenges have historically limited

the study of developing human tissues at the
molecular level. First, access to human embry-
onic and fetal tissues is limited. Second, even
when available, the tissues are usually fixed
and nucleic acids are degraded. Third, until
recently, most molecular studies of complex
tissues have been confounded by cell type het-
erogeneity. For these reasons, contemporary
knowledge of the molecular basis of in vivo
human development mostly derives from a
combination of human genetics (in particular,

of Mendelian disorders), in vivo investiga-
tions of model organisms (in particular, of
the mouse), and in vitro studies of differentiat-
ing human cell lines (in particular, of embry-
onic or induced pluripotent stem cells), rather
than from direct investigations of developing
human tissues.
A reference human cell atlas based on de-

veloping tissues could serve as the foundation
for a systematic effort to better understand the
molecular and cellular events that give rise to
all rare and common disorders of develop-
ment, which collectively account for a major
proportion of pediatric morbidity and mor-
tality (6, 7). Furthermore, although pioneer-
ing cell atlases have already been reported
for many adult human organs (8, 9), develop-
ing tissues may provide better opportunities
to study the in vivo emergence and differen-
tiation of human cell types. Relative to em-
bryonic and fetal tissues, adult tissues are
dominated by differentiated cells, and many
cell states are not represented. By better re-
solving cell types and their trajectories, single-
cell atlases generated from developing tissues
could broadly inform our basic understanding
of human biology as well as strategies for cell
reprogramming and cell therapy.
As one step toward a comprehensive cell

atlas of human development (10), we set out
to generate single-cell atlases of both gene ex-
pression and chromatin accessibility using
diverse human tissues obtained during mid-
gestation (DESCARTES,Developmental Single
Cell Atlas of gene Regulation and Expression;
descartes.brotmanbaty.org). For gene expres-
sion, we applied three-level single-cell com-
binatorial indexing (sci-RNA-seq3) (11) to 121
fetal tissues representing 15 organs, altogether
profiling gene expression in 5 million cells
(Fig. 1A and table S1). We also measured chro-

matin accessibility in 1.6 million cells from
the same organs using an overlapping set of
samples (12). The profiled organs span diverse
systems; however, some systems were not
accessible—bone marrow, bone, gonads, and
skin are notably absent.
Tissues were obtained from 28 fetuses rang-

ing from 72 to 129 days in estimated post-
conceptual age. We applied a method for
extracting nuclei directly from cryopreserved
tissues that works across a variety of tissue
types and produces homogenates suitable for
both sci-RNA-seq3 and sci-ATAC-seq3 (single-
cell combinatorial indexing assay for transposase-
accessible chromatin with high-throughput
sequencing) (12). For most organs, extracted
nuclei were fixed with paraformaldehyde.
For renal and digestive organs where ribo-
nucleases (RNases) and proteases are abun-
dant, we used fixed cells rather than nuclei,
which increased cell and mRNA recovery (13).
For each experiment, nuclei or cells from a
given tissue were deposited to different wells,
such that the first index of sci-RNA-seq3 pro-
tocol also identified the source. As a batch
control for experiments on nuclei, we spiked a
mixture of human HEK293T andmouse NIH/
3T3 nuclei, or nuclei from a common sentinel
tissue (trisomy 21 cerebrum), into one or sev-
eral wells. As a batch control for experiments
on cells, we spiked cells derived from a tissue
(pancreas) into one or several wells.
We sequenced sci-RNA-seq3 libraries from

sevenexperiments across seven IlluminaNovaSeq
6000 sequencer runs, altogether generating
68.6 billion raw reads. Processing data as pre-
viously described (11), we recovered 4,979,593
single-cell gene expression profiles [unique
molecular identifier (UMI) > 250] [see files S1
to S3 at the Gene Expression Omnibus (GEO)
(accession no. GSE156793)]. Single-cell tran-
scriptomes from human-mouse control wells
were overwhelmingly species coherent (~5%
collisions) (fig. S1A). Uniformmanifold approx-
imation and projection (UMAP) (14) of nuclei
or cells from the sentinel tissues indicated that
cell type differences dominated over interex-
perimental batch effects (fig. S1, B and C).
Integrated analysis (15) of nuclei and cells from
the common pancreatic tissue also resulted in
highly overlapping distributions (fig. S1D).
We profiled a median of 72,241 cells or

nuclei per organ [Fig. 1A; maximum, 2,005,512
(cerebrum); minimum, 12,611 (thymus)]. De-
spite shallow sequencing (~14,000 raw reads
per cell) relative to other large-scale single-
cell RNA sequencing (scRNA-seq) atlases (16–19),
we recovered a comparable number of UMIs
per cell or nucleus (median 863 UMIs and
524 genes, not including cultured cells; fig.
S1E). As expected, nuclei exhibited a higher
proportion of UMIs mapping to introns than
cells (56% for nuclei; 45% for cells; P < 2.2 ×
10−16, two-sided Wilcoxon rank sum test). We
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Fig. 1. Data generation and identifying cell types across 15 human organs.
(A) Project workflow (left) and bar plot (right) showing the number of cells profiled
per organ on a log10 scale. Dots indicate the number of cells remaining for downstream
analysis after quality control (QC) filtering procedures. PCR, polymerase chain
reaction. (B) Bar plot showing the distribution of estimated postconceptual ages for
tissue samples corresponding to each organ. (C) After filtering against low-quality

cells and doublet-enriched clusters, 4 million single-cell gene expression profiles
were subjected to UMAP visualization and Louvain clustering with Monocle 3 on a
per-organ basis. Clusters were initially annotated on a per-organ basis as well,
utilizing recent organ-specific cell atlas efforts, which yielded 172 main cell types
(colors and labels). Because many cell type annotations appear in multiple organs
(e.g., vascular endothelial cells), we consolidated these to 77 main cell types.
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henceforth use the word cells to refer to both
cells and nuclei, unless otherwise stated.
Tissues were readily identified as deriving

from a male (n = 14) or a female (n = 14) by
sex-specific gene expression (fig. S1F). Each of
the 15 organs was represented by multiple
samples (median 8) that included at least two
of each sex (fig. S1G) and a range of estimated
postconceptual ages (Fig. 1B). Pseudobulk tran-
scriptomes clustered by organ rather than in-
dividual or experiment [fig. S1H; files S4 and
S5 at GEO (GSE156793)]. About half of the
expressed, protein-coding transcripts were dif-
ferentially expressed across pseudobulk tran-
scriptomes [11,766 of 20,033; false discovery
rate (FDR) of 5%; table S2].
We applied Scrublet (20) to detect 6.4% likely

doublet cells, which corresponded to a doublet
estimate of 12.6% including both within-cluster
and between-cluster doublets (fig. S1I).We then
applied a scalable strategy that we had prev-
iously developed (11) to remove low-quality cells,
doublet-enriched clusters, and the spiked-in
HEK293T andNIH/3T3 cells. All analyses below
focus on the 4,062,980 human single-cell gene
expression profiles derived from 112 fetal tis-
sue samples that remained after this filter-
ing step.

Identification and annotation of 77 main
cell types

Using Monocle 3 (11), we subjected single-cell
gene expression profiles to UMAP visualization
and Louvain clustering on a per-organ basis.
Altogether, we initially identified and anno-
tated 172 cell types on the basis of cell type–
specific marker gene expression (16, 21–84)
[Fig. 1C and table S3; files S6 and S7 at GEO
(GSE156793)]. After collapsing common an-
notations across tissues, these reduced to 77
main cell types, 54 of which were observed in
only a single organ (e.g., Purkinje neurons in
the cerebellum) and 23 of which were ob-
served in multiple organs (e.g., vascular endo-
thelial cells in every organ). There were 15 cell
types that we were unable to annotate during
ourmanual, organ-by-organ review (the subset
named by a pair of markers in Fig. 1C); these
are discussed further below and in (85). Each
of these 77 main cell types was represented by
a median of 4829 cells, ranging from 1,258,818
cells (excitatory neurons in the cerebrum) to only
68 cells (SLC26A4- andPAEP-positive cells in the
adrenal gland) (fig. S2A). Each main cell type
was observed inmultiple individuals (median 9;
fig. S2B). We recovered nearly all major cell
types identified by previous atlasing efforts
directed at the same organs, despite differences
with respect to species, stage of development,
and technology (16,23,28,33,35, 51,69, 72,86–88).
We identified a median of 12 main cell types
per organ, ranging from 5 (thymus) to 16 (eye,
heart, and stomach). We did not observe a
correlation between the number of profiled

cells and the number of identified cell types
(Spearman ⍴ = −0.10, P = 0.74).
On average, we identified 11 marker genes

per main cell type (minimum, 0; maximum,
294; defined as differentially expressed genes
with at least a fivefold difference between
first and second ranked cell type with respect
to expression; FDR of 5%; fig. S2C and table
S4). There were several cell types that lacked
marker genes at this threshold because of
highly related cell types in other organs (e.g.,
enteric glia versus Schwann cells). For this
reason, we also report sets of within-tissue
marker genes, determined by the same pro-
cedure but on an organ-by-organ basis (aver-
age 147 markers per cell type; minimum, 12;
maximum, 778; fig. S2D and table S5). An
interactive website facilitates the explora-
tion of these data by tissue, cell type, or gene
(descartes.brotmanbaty.org).
Although canonical markers were generally

observed and were critical for our annotation
process, to our knowledge,most of the observed
markershavenotbeen identified inprior studies.
For example, OLR1, SIGLEC10, and noncoding
RNA RP11-480C22.1 are among the strongest
markersofmicroglia, alongwithmore-established
microglial markers such as CLEC7A (89), TLR7
(90), and CCL3 (91). As anticipated, given that
these tissues are undergoing development,
many of the 77 main cell types include states
progressing from precursors to one or several
terminally differentiated cell types. For exam-
ple, cerebral excitatory neurons exhibited a
continuous trajectory from PAX6+ neuronal
progenitors toNEUROD6+ differentiating neu-
rons (92) to SLC17A7+ mature neurons (93)
(fig. S2, E and F). In the liver, hepatic progen-
itors (DLK1+, KRT8+, and KRT18+) (94, 95)
exhibited a continuous trajectory to functional
hepatoblasts (SLC22A25+, ACSS2+, and ASS1+)
(fig. S2, G and H) (96–98). In contrast with
mouse organogenesis—wherein the matura-
tion of the transcriptional program is tightly
coupled to developmental time (11)—cell state
trajectories were inconsistently correlated with
estimated postconceptual ages in these data
(fig. S2, I and J). A potential explanation for
this is that gene expression is markedly more
dynamic during embryonic than during fetal
development. However, it is also possible that
inaccuracies in the estimated postconceptual
ages confound our resolution.
In addition to these manual annotations of

cell types, we also generated semiautomated
classifiers for each organ using Garnett (99).
The Garnett classifiers were generated agnos-
tic of previous clustering, with marker genes
separately compiled from the literature (99).
Classifications by Garnett were concordant
with manual classifications (fig. S3A). Using
the Garnettmodels trained on these data, we
were able to accurately classify cell types from
other single-cell datasets, including data gen-

erated with different methods as well as those
from adult organs. When we applied the clas-
sifier for pancreas to inDrop scRNA-seq data
(100), Garnett correctly annotated 82% of the
cells (cluster-extended; 11% incorrect, 8% un-
classified) (fig. S3B). Thesemodels can broadly
be used for the automated cell type classifica-
tion of single-cell data from diverse organs
(fig. S3C; descartes.brotmanbaty.org).
We next evaluated the specificity of ourmain

cell types by intradataset cross-validation with
a support vector machine (SVM) classifier
(101). In this framework, high cross-validation
precision and recall values indicate that cells
derived from a given cluster can robustly be
reassigned to that cluster; we thus use high F1
scores as a proxy for identifying cell clusters as
valid types, at least in the setting of the tissue
in which they were identified. We first eval-
uated this approach on the kidney. As ex-
pected, annotated kidney cell types havemuch
higher specificity scores (median 0.99) than
control cell types, in which cell labels are per-
muted before cross-validation (median 0.17)
[Fig. 2A (leftmost panel only), Fig. 2B (left
panel only), fig. S4A, and table S3].
We then applied this approach to cells from

each organ. Once again, annotated main cell
types exhibited much higher specificity scores
than permuted cell types (Fig. 2C and fig. S4B;
median 0.99 versus 0.10; P < 2.2 × 10−16, two-
sidedWilcoxon rank sum test). Despite smaller
numbers of cells, most of the 15 initially un-
annotated cell types also exhibited high spe-
cificity scores (median 0.98). The exceptions
are probably better described as subtypes of
other cell types [discussed further below and
in (85)]. We also applied this method to the
consolidated set of 77 main cell types (i.e.,
rather than organ-by-organ) with similar re-
sults (fig. S4C).

Automated preliminary annotation of
cell subtypes

To identify cell subtypes, we performed un-
supervised clustering on main cell types with
>1000 cells in any given tissue. For each main
cell type in each tissue, we first applied batch
correction (102) followed by dimensionality
reduction and Louvain clustering (Fig. 2A).
Aftermerging clusters that were not readily dis-
tinguishable by the intradataset cross-validation
procedure described above, a total of 657 cell
subtypes were identified across the 15 tissues,
with amedian of 824 cells in each. All subtypes
were composed of cells contributed by at least
two individuals (median 7). Unsurprisingly,
given the procedure used for merging clusters,
these subtypes have higher specificity scores
than permuted controls (median 0.77 versus
0.13; P < 2.2 × 10−16, two-sided Wilcoxon rank
sum test; Fig. 2C).
We next sought to leverage existing mouse

cell atlases to annotate these human subtypes
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in an automated fashion.With a cell type cross-
matching method that we had previously de-
veloped (11), we could match 605 of 606 (99%)
human cell subtypes to at least one cell type in
corresponding fetal and/or adult tissues from
themouse cell atlas (MCA) (16) (specificity score
beta > 0.01, the same threshold that we used to
align against MCA previously; 51 adrenal sub-
types were excluded because corresponding
MCA tissue was not available) (table S6 and
figs. S5 to S8). Additionally, 77 of 148 (52%)
cerebral or cerebellar subtypesmatched to at
least one adult cell type from the mouse brain
cell atlas (MBCA) (fig. S9) (50).
Despite the species difference, many human

cell subtypesmatched 1:1withmouse cell types.
For example, diverse epithelial subtypes in the
human kidney matched 1:1 with annotated
MCA cell types (Fig. 2A), and diverse neuronal
subtypes in the human cerebrum matched 1:1
with annotated MBCA cell types (fig. S9). Not-
ably, although there were many sets of human

subtypes that matched a single MCA orMBCA
cell type (e.g., hepatoblasts in fig. S5 and oli-
godendrocytes in fig. S9), these likely reflect
bonafide heterogeneity as evidenced by their
specificity scores (Fig. 2C). Additional work
is necessary to annotate such subtypes with
greater granularity.

Integration across tissues and investigation of
initially unannotated cell types

We next sought to integrate data and compare
cell types across all 15 organs. To mitigate the
effects of gross differences in sampling, we ran-
domly sampled 5000 cells per cell type per
organ (or in cases where <5000 cells of a given
cell type were represented in a given organ, all
cells were taken), and we performed UMAP
visualization (Fig. 3A and fig. S10A). As expected,
cell types represented in multiple organs, as
well as developmentally related cell types, tended
to colocalize. Many surface proteins (4565 of
5480), secreted proteins (2491 of 2933), tran-

scription factors (1715 of 1984), and noncoding
RNAs (3130 of 10,695) were differentially ex-
pressed across the 77main cell types (FDRof 0.05;
Fig. 3B and table S4; descartes.brotmanbaty.
org). The expression patterns of noncoding
RNAs were notably sufficient to separate cell
types into developmentally coherent groups
(fig. S10, B and C).
As noted above, there were 15 cell types that

we were unable to annotate during our man-
ual, organ-by-organ review (the subset named
by pairs of markers in Fig. 1C). To shed light
on these, we examined their distribution in the
global UMAP (Fig. 3A), whether they matched
to annotated cell types in MCA or MBCA (figs.
S5 to S9), their distribution across tissues de-
rived fromdifferent individuals (fig. S11A), and
their potential for maternal origin (fig. S11B).
These further analyses enabled us to annotate

8of the 15 cell types (85). For example, rareCSH1-
and CSH2-positive cells in the lung and adre-
nal gland (twoof themostdeeplyprofiledorgans)
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Fig. 2. Identification of cell subtypes. (A) Pipeline for cell subtype
identification. Briefly, on a tissue-by-tissue basis, we subjected each main cell
type with >1000 cells to batch correction (102), UMAP visualization, and Louvain
clustering. Clusters with similar transcriptomes were merged by an automated
procedure. Briefly, we applied an intradataset cross-validation approach (101)
to evaluate their specificity and iteratively merged similar clusters. We then
compared putative human cell subtypes identified in our data (rows) against
annotated mouse cell types from the corresponding tissues (16) (columns) by
cell type correlation analysis. Colors correspond to beta values, normalized by

the maximum beta value per row. All MCA cell types with a beta of a matched
human cell type >0.01—i.e., also the maximum beta for that human cell type—
are shown for the kidney metanephric cells. (B) Confusion matrix for intradataset
cell type cross-validation with an SVM classifier for main cell types (left) and
metanephric subtypes (right) in the kidney. In total, 2000 cells (or all cells for
cell types with <2000 cells profiled) are randomly sampled for each cell type
or subtype before cross-validation analysis. (C) Box plot showing the cell
specificity score (F1 score) distribution for permuted controls, main cell types,
and subtypes from intradataset cross-validation.
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are highly similar to placental trophoblasts—
e.g., expressing high levels of placental lacto-
gen, chorionic gonadotropin, and aromatase
(Fig. 3A) (85).AFP- andALB-positive cells in the
placenta and spleen resemble hepatoblasts—
e.g., expressing high levels of serum albumin,
alpha fetoprotein, and apolipoproteins (Fig. 3A)
(85) [at least in the placenta, similar hepatoblast-
like AFP- and ALB-positive cells were observed
in the mouse (fig. S5)]. Follow-up immuno-
staining studies supported the presence of
these trophoblast-like and hepatoblast-like
cells in the adrenal gland and spleen, re-
spectively (Fig. 3, C and D, and fig. S12). Given
that these cell types are rarely but recurrently
observed in several organs, they potentially
correspond to circulating trophoblasts and
circulating hepatoblasts.
In males, both IGFBP1- and DKK1-positive

as well as PAEP- andMECOM-positive cells in
the placenta expressed appreciable levels ofXIST
or TSIX (fig. S12B); on further review of mark-
ers, these correspond tomaternal decidualized
stromal cells and maternal endometrial epithel-
ial cells, respectively. This conclusion is supported
by maternal genotypes in the corresponding
cell types in chromatin accessibility data (12).
Several additional cell types were annotated

through strong matches to MCA or MBCA
(fig. S13) or through their position in the
global UMAP coupled with additional litera-
ture review (Fig. 3A) (85); these include STC2-
and TLX1-positive cells, which are abundant in
the spleen and express genes associated with
mesenchymal precursor or stem cells (103–105).
Of the remaining seven initially unannotated
cell types, four would likely better be classified
as subtypes (and correspondingly, these tended
to have lower specificity scores), and three
have high specificity scores but remain ambig-
uous (85).

Characterization of blood lineage development
across organs

The nature of this dataset creates an opportu-
nity to systematically investigate organ-specific
differences in gene expression within broadly
distributed cell types—for example, blood cells.
We reclustered 103,766 cells, derived from all
15 organs, that corresponded to hematopoietic
cell types (Fig. 4A).We thenperformedLouvain
clustering and further annotated fine-grained
blood cell types, in some cases identifying very
rare cell types (Fig. 4B). For example, myeloid
cells separate intomicroglia, macrophages, and
diversedendritic cell subtypes [CD1C+,S100A9+,
CLEC9A+, and plasmacytoid dendritic cells
(pDCs)] (106). The microglial cluster primarily
derives from brain tissues, and it is well sepa-
rated from macrophages, which is consistent
with their distinct developmental trajectories
(107). Lymphoid cells clustered into several
groups, including B cells, natural killer (NK)
cells, ILC 3 cells, and T cells, the latter of which
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Fig. 4. Identification and characterization of blood cell subtypes and developmental trajectories. (A and
B) UMAP visualization and marker-based annotation of blood cell types colored by organ type (A) and cell
type (B). (C) UMAP visualization of blood cells, integrating across all profiled organs of this study and an
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includes the thymopoiesis trajectory. We also
recovered very rare cell types such as plasma
cells (139 cells, mostly in placenta and making
up 0.1% of all blood cells or 0.003% of the full
dataset) and TRAF1+ antigen-presenting cells
(APCs) (189 cells, mostly in thymus and heart
and making up 0.2% of all blood cells or
0.005% of the full dataset).
To validate these annotations, we integrated

fetal blood cells from all organswith an scRNA-
seq atlas of blood cells from the fetal liver (108)
(Fig. 4C, left, and fig. S14A). Despite different
methods, corresponding cell types from two
datasets were highly overlapping; this was
also the case upon integration analysis with
another scRNA-seq dataset of 1231 human
embryonic blood cells (109) (fig. S14B). Nota-
bly, some extremely rare cell types identified
through CD45+ fluorescence-activated cell
sorting (FACS) enrichment (e.g., VCAM1+
EI macrophages, monocyte precursors, and
neutrophil-myeloid progenitors) were not an-
notated in our data. On the other hand, we
captured fetal blood cells derived from tissues
other than the liver—e.g., microglia in the brain
and T and B cells in the thymus and spleen,
respectively. Furthermore, as they span multi-
ple organs, we are better able to capture cell
state transition paths from hematopoietic stem
and progenitor cells (HSPCs) to lymphoid cells
than a single-organ study (Fig. 4C, right).
Although gene expression markers for dif-

ferent immune cell types have been exten-
sively studied, these may be limited by their
definition via a restricted set of organs or cell
types. Here, we find that many conventional
immune cell markers were expressed in mul-
tiple cell types. For example, conventional
markers for T cells (110–112) were also ex-
pressed in macrophages and dendritic cells
(CD4) or NK cells (CD8A), consistent with
other studies (113) (fig. S14C). We computed
pan-organ cell type–specific markers across
14 blood cell types (Fig. 4D and table S7).
From this we observed that T cells specifi-
cally expressed CD8B and CD5 (114) as ex-
pected, but also TENM1 (Fig. 4D and fig. S14C).
ILC 3 cells, whose annotation was determined
on the basis of their expression of RORC (115)
and KIT (116), were more specifically marked
by SORCS1 and JMY (Fig. 4D and fig. S14C).
These and other markers identified by pan-
organ analysis may be useful for labeling and
purifying specific blood cell types.
As expected, different organs showed vary-

ing proportions of blood cells (Fig. 4E). For
example, the liver contained the highest pro-
portion of erythroblasts, consistent with its
role as the primary site of fetal erythropoiesis
(117), whereas T cells were enriched in the
thymus and B cells in the spleen. Nearly all
blood cells recovered from the cerebellum and
cerebrum were microglia. The tissue distribu-
tion of ILC 3 cells as well as subtypes of den-

dritic cells was captured as well (Fig. 4E and
fig. S14D). Pan-organ analysis also enabled the
identification of rare cell populations in spe-
cific organs. We identified rare HSPCs in the
liver but also rare cells that are transcription-
ally similar to HSPCs in the lung, spleen,
thymus, heart, intestine, adrenal gland, and
other organs (fig. S15). Subclustering analyses
showed that HSPCs outside of the liver, as well
as a subset of liver HSPCs, expressed differen-
tiationmarkers such as LYZ (118),ACTG1 (119),
and ANK1 (120), whereas most liver HSPCs
expressed MECOM and NRIP1, both of which
are required for themaintenance and function
of normal quiescent HSPCs (121, 122) (fig. S15).
Focusing on erythropoiesis, we observed a

continuous trajectory from HSPCs to an in-
termediate cell type, erythroid-basophil-
megakaryocyte biased progenitors (EBMPs),
which then split into erythroid, basophilic, and
megakaryocytic trajectories (Fig. 5A and table
S8), consistentwith a recent study of themouse
fetal liver (123, 124). This consistency was de-
spite differences in species (human versus
mouse), techniques (sci-RNA-seq3 versus 10x
Genomics), and tissues (pan-organ versus
liver only). With unsupervised clustering and
adopting terminology from that study (123),
we further partitioned the continuum of ery-
throid states into three stages: early erythroid
progenitors (EEPs) (marked by SLC16A9 and
FAM178B), committed erythroid progenitors
(CEPs) (marked by KIF18B and KIF15), and
cells in the erythroid terminal differentiation
state (ETDs) (marked byTMCC2 andHBB) (Fig.
5B). Early and late stages of megakaryocytic
cellswere also readily identified (Fig. 5, A andB).
As expected, given their established role in

fetal erythropoiesis, a portion of blood cells in
the liver and spleen corresponded to EEPs,
CEPs, and megakaryocyte progenitors (125).
Notably, we also observed EEPs, CEPs, and
megakaryocyte progenitors in the adrenal
gland in every sample studied (Fig. 5C and
fig. S16A). Becausewe do not observe cell types
that are more common in the liver and spleen,
trivial contamination during recovery of the
adrenal glands is an unlikely explanation. Al-
though occasional islands of extramedullary
hematopoiesis have been observed in the ad-
renal glands of human embryos (126, 127), the
consistency across individuals led us to further
investigate whether the adrenal glands may
serve as a normal site of erythropoiesis in
mammals. Immunohistochemical analysis of
human fetal adrenal tissues showed nucleated
GYPA+ cells outside CD34+ blood vessels (Fig.
5D and fig. S16B). We further used imaging
flow cytometry to visualize and enumerate
maturing erythroid precursors and enucleated
erythrocytes (128) in the perinatal period of
the mouse. Approximately 8% of viable disso-
ciated cells from the adrenal gland consisted
of maturing erythroblasts, compared with 0.2%

of viable dissociated cells in the kidney (Fig.
5E). Also consistent with the adrenal gland
being a site of ongoing erythropoiesis, its
distribution of immature to mature erythro-
blasts matched closely with that of the bone
marrow of adult mice (Fig. 5, E and F).
Macrophages were even more widely dis-

tributed.We collated all macrophages, together
with microglia from the brain, and subjected
them to UMAP visualization and Louvain clus-
tering, independent of other cell types (Fig. 5,
G and H; fig. S16C; and table S9). Notably, mi-
croglia were divided into three subclusters,
one of which,marked by IL1B and TNFRSF10D,
likely represents activated microglia express-
ing proinflammatory cytokines involved in the
normal development of the nervous system
(129, 130). The other microglial clusters were
marked by expression ofTMEM119 andCX3CR1
(131) (more common in the cerebrum) or
PTPRG and CDC14B (132) (more common in
the cerebellum).
The macrophages outside the brain clus-

tered into threemajor groups (Fig. 5, G andH;
fig. S16C; and table S9): (i) antigen-presenting
macrophages, foundmostly in gastrointestinal
(GI) tract organs (intestine and stomach) and
markedbyhigh expression of antigen-presenting
(e.g., HLA-DPB1 and HLA-DQA1) and inflam-
matory activation genes [e.g., AHR (133)]; (ii)
perivascular macrophages, found in most or-
gans, with specific expression of markers such
as F13A1 (134) and COLEC12 (135), as well as
markers such as RNASE1 and LYVE1; and (iii)
phagocytic macrophages, enriched in the liver,
spleen, and adrenal gland (Fig. 5I), with spe-
cific expression of markers such as CD5L (136),
TIMD4 (137), andVCAM1 (138). Phagocyticmac-
rophages are critical for removing the pyreno-
cytes (the so-called extruded nucleus) after
enucleation of late-stage erythroblasts to form
reticulocytes; their observation in the adrenal
gland is consistent with its aforementioned
potential role as an additional site of normal
fetal erythropoiesis. Below, we leverage inte-
grationwith amouse atlas of organogenesis (11)
to investigate the conserved program of blood
cell specification and developmental origins of
microglia and macrophages.

Characterization of endothelial and epithelial
cells across organs

As a second analysis of a single class of cells
across many organs, we reclustered 89,291
endothelial cells (ECs) that correspond to vas-
cular endothelium (VECs), lymphatic endo-
thelium (LECs), or endocardium. These three
groups readily separated from one another,
and VECs further clustered, at least to some
degree, by organ (fig. S17, A to C). That organ-
specific differences are more readily detected
than differences between arteries, capillaries,
and veins is consistent with previous cell at-
lases of the adult mouse (16, 28). We performed
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an integrative analysis of ECs from human fetal
tissues (this study) and mouse adult tissues
(139) (fig. S17, D andE). Both human andmouse
ECs were separated first by vascular versus

lymphatic versus endocardial, and then by or-
gan. VECs from the same tissue were generally
clustered together, despite differences with
respect to species, developmental stage, and

technique. Conserved markers of organ-specific
ECs were readily identified (fig. S17F) (139).
Differential gene expression analysis identi-

fied 700 markers that are specifically expressed
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Fig. 5. Identification and characterization of erythropoiesis and macrophage
differentiation in adrenal gland. (A) Zoomed view of the erythropoiesis trajectory
portion of Fig. 4B, colored by erythroid or megakaryocyte subtype. Black arrows
show trajectory directionalities defined by (123). (B) Plots similar to (A), colored
by the normalized expression of cell type–specific genes (FDR of 0.05 and more
than twofold expression difference between first and second ranked cell type),
with the number of cell type–specific genes used and names of the top few genes
shown. UMI counts for these genes are scaled for library size, log-transformed,
aggregated, and then mapped to Z scores. (C) Point and box plot showing the
proportion of blood cells that are EEPs for individual samples of different organs.
Samples with low recovery of blood cells (≤200) are excluded. (D) Representative
fluorescence microscopy of human fetal adrenal tissue, staining for endothelium
(CD34+) and erythroblasts (nucleated and GYPA+); nuclei stained with blue DAPI.

The arrow indicates a GYPA+ erythroblast outside a CD34+ blood vessel. Scale
bars, 10 mm. (E) (Left) Percentage of dissociated kidney and adrenal glands
from newborn (P0) mice composed of enucleated erythrocytes and maturing
erythroblasts. (Right) Distribution of maturing erythroblasts (proerythroblasts,
ProE; basophilic erythroblasts, BasoE; polychromatophilic erythroblasts, PolyE;
and orthochromatic erythroblasts, OrthoE) in the adrenal gland at P0 and in
adult bone marrow. Error bars represent means + SEM, n = 3. (F) Representative
images of maturing erythroblasts in the P0 adrenal gland and the adult bone
marrow. Scale bars, 10 mm. (G and H) UMAP visualization and marker-based
annotation of macrophage subtypes colored by organ type (G) and subtype
name (H). (I) Point and box plot showing the proportion of blood cells that are
phagocytic macrophages for individual samples of different organs. Samples with
low recovery of blood cells (≤200) are excluded.
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in a subset of ECs (FDR of 0.05 andmore than
twofold expression difference between first
and second ranked cluster) (fig. S17G and table
S10). About one-third of these encoded mem-
brane proteins, many of which appeared to
correspond to potential specialized functions
(12, 140–142). In agreement with observations
in mice (139), brain ECs specifically expressed
gene sets involved in amino acid transport
(q = 5.6 × 10−10) and carboxylic acid trans-
port (q = 4.2 × 10−8); lung ECs specifically
expressed gene sets involved in adenosine
3′,5′-monophosphate (cAMP) (q = 8.2 × 10−3)
and cyclic nucleotide (q = 1.4 × 10−2) ca-
tabolism, and vascular ECs from the GI tract,
heart, and muscle specifically expressed gene
sets involved in stem cell differentiation (q =
3.7 × 10−2). Potentially underlying these differ-
ences, human fetal ECs expressed distinct sets
of transcription factors (TFs) (fig. S17H). For
example, LECs specifically expressed TBX1,
brain VECs specifically expressed FOXQ1 and
FOXF2, and liver VECs specifically expressed
DAB2, all of which are consistent with obser-
vations in mice (139, 143, 144).
As a third analysis of a broadly distributed

type of cell, we reclustered 282,262 epithelial
cells, derived from all organs, and subjected
these to UMAP visualization (fig. S18, A and
B). Although some epithelial cell types were
highly organ specific—e.g., acinar (pancreas)
and alveolar cells (lung)—epithelial cells with
similar functions generally clustered together
(fig. S18C).
Within epithelial cells, two neuroendocrine

cell clusters were identified (fig. S18C). The
simpler of these corresponded to adrenal
chromaffin cells and was marked by the spe-
cific expression of HMX1 (NKX-5-3), a TF in-
volved in sympathetic neuron diversification
(145). The other cluster comprised neuroendo-
crine cells from multiple organs (stomach, in-
testine, pancreas, and lung) and was marked
by specific expression of NKX2-2, a TF with a
key role in pancreatic islet and enteroendo-
crine differentiation (146). We performed fur-
ther analysis on the latter group, identifying
five subsets (fig. S18, D to F): (i) pancreatic islet
beta cells, marked by insulin expression; (ii)
pancreatic islet alpha and gamma cells, marked
by pancreatic polypeptide and glucagon ex-
pression; (iii) pancreatic islet delta cells, marked
by somatostatin expression; (iv) pulmonary
neuroendocrine cells (PNECs), marked by ex-
pression of ASCL1 and NKX2-1, both TFs with
key roles in specifying this lineage in the lung
(147, 148); and (v) enteroendocrine cells. En-
teroendocrine cells further comprised several
subsets, including NEUROG-expressing pan-
creatic islet epsilon progenitors (149, 150),
TPH1-expressing enterochromaffin cells in
both the stomach and intestine (151), and
gastrin- or cholecystokinin-expressing G, L, K,
and I cells (151). Finally, we observed ghrelin-

expressing enteroendocrine progenitors in
the stomach and intestine (150, 152), but also
ghrelin-expressing endocrine cells in the de-
veloping lung (153) (fig. S18F). The diverse
functions of neuroendocrine cells are closely
linked with their secreted proteins; we identi-
fied 1086 secreted protein-coding genes differ-
entially expressed across neuroendocrine cells
(FDR of 0.05) (fig. S18G and table S11). For
example, PNECs showed specific expression of
trefoil factor 3, which is involved in mucosal
protection and lung ciliated cell differentiation
(154); gastrin-releasing peptide, which stimu-
lates gastrin release fromG cells in the stomach
(155); and SCGB3A2, a surfactant associated
with lung development (156).
As an illustrative example of how these data

can be used to explore cell trajectories, we fur-
ther investigated the path of epithelial cell
diversification leading to renal tubule cells.
Combining and reclustering ureteric bud and
metanephric cells, we identified both progen-
itor and terminal renal epithelial cell types,
with differentiation paths that are highly con-
sistent with a recent study of the human fetal
kidney (157) (fig. S19A). By differential gene
expression analysis, we further identified TFs
potentially regulating their specification (fig.
S19B and table S12). For example, nephron
progenitors in the metanephric trajectory spe-
cifically expressed high levels of mesenchyme
andmeis homeobox genes (MEOX1,MEIS1, and
MEIS2) (158), whereas podocytes specifically
expressedMAFB and TCF21/POD1 (159, 160).
As another example, HNF4A was specifically
expressed in proximal tubule cells—a muta-
tion of this gene causes Fanconi renotubular
syndrome, a disease that specifically affects
the proximal tubule—and HNF4A was recent-
ly shown to be required for formation of the
proximal tubule in mice (161).

Integration of human and mouse
developmental atlases

The transition from embryonic to fetal devel-
opment is of considerable interest, but access
to human embryonic tissues is even more lim-
ited than access to fetal tissues. To again lever-
age the mouse, we sought to integrate these
human fetal data with a mouse organogenesis
cell atlas (MOCA), for whichwe had previously
profiled 2 million cells from undissected em-
bryos spanning E9.5 to E13.5 (11). For context,
this window corresponds to days 22 to 44 of
human development (162, 163), whereas the
tissues studied here are estimated to derive
from days 72 to 129.
First, we compared the 77 main cell types

defined here against the developmental tra-
jectories of organogenesis defined by MOCA
bymeans of a cell type cross-matchingmethod
(11). Most human cell types strongly matched
to a single major mouse trajectory and sub-
trajectory (fig. S20 and tables S13 and S14).

These generally corresponded to expectation,
although a few discrepancies facilitated correc-
tions toMOCA (see legends of figs. S20 and S21).
Many human cell types and mouse trajectories
that lacked strong 1:1 matches [summed non-
negative least squares (NNLS) regression co-
efficients < 0.6] corresponded to tissues excluded
in the other dataset (e.g., mouse placenta and
human skin and gonads). Other ambiguities
probably follow from the gap between the de-
velopmental windows studied (e.g., adrenal
cell types), rarity (e.g., bipolar cells), and/or
complex developmental relationships (e.g., fe-
tal cell types that derive from multiple em-
bryonic trajectories).
Second, we sought to directly coembed hu-

man and mouse cells together. In brief, we
sampled 100,000 mouse embryonic cells from
MOCA (randomly) and ~65,000 human fetal
cells (maximum 1000 cells from each of 77 cell
types) and subjected these to integrated analy-
sis (15). The distribution of mouse cells in the
resulting UMAP visualization was similar to
our global analysis of MOCA (Fig. 6, A to C,
and figs. S21 to S23) (11). Furthermore, despite
the species difference, human fetal cells were
overwhelmingly distributed in a manner that
respected developmental relationships between
cell types. For example, human fetal endothelial,
hematopoietic, hepatic, epithelial, and mesen-
chymal cells all mapped to the corresponding
mouse embryonic trajectories (Fig. 6B and fig.
S21).Within eachmajor trajectory,mouse cells
order by successive time point (11), whereas
human fetal cells appear to project from the
last (E13.5) mouse embryonic time point (Fig.
6C). At the subtrajectory level, seniscal map-
pings include human fetal intestinal epithelial
cells emanating from the mouse midgut-
hindgut subtrajectory; human fetal parietal
and chief cells (stomach) and acinar and duc-
tal cells (pancreas) emanating from the mouse
foregut epithelial subtrajectory; human fetal
bronchiolar and alveolar epithelial cells ema-
nating from the mouse lung epithelial trajec-
tory; human fetal ureteric bud andmetanephric
cells emerging separately from the mouse em-
bryonic renal epithelial trajectory; and many
others (figs. S21 to S23).
However, there were also a few surprises.

For example, although central nervous system
(CNS) neurons mapped to the neural tube
trajectory and enteric nervous system (ENS)
glia and Schwann cells mapped to peripheral
nervous system (PNS) glial trajectories, some
neural crest derivatives—including ENS neu-
rons, visceral neurons, sympathoblasts, and
chromaffin cells—clustered separately from the
corresponding mouse embryonic trajectories
(figs. S21 to S23), potentially because of ex-
cessive differences between the developmental
stages or between the species. Human fetal
astrocytes clustered with themouse embryonic
neural epithelial trajectory [mouse astrocytes
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do not develop until E18.5 (164)]. Human fetal
oligodendrocytes overlap a rare mouse em-
bryonic subtrajectory (Pdgfra+ glia) that, in
retrospect, is more likely to correspond to oli-
godendrocyte precursors (Olig1+, Olig2+, and
Brinp3+) (165, 166), which calls into question

our previous annotation of a different Olig1+
subtrajectory as oligodendrocyte precursors
(11). These and other unexpected relationships
merit further investigation.
To assess relationships between mouse em-

bryonic and human fetal cells in greater detail,

we applied the same strategy to extracted cells
from the hematopoietic (Fig. 6D and fig. S24),
endothelial (fig. S25), and epithelial (fig. S26)
trajectories. In these visualizations, we observe
examples of the organ-resolved human data
deconvoluting the whole-embryo mouse data

Cao et al., Science 370, eaba7721 (2020) 13 November 2020 10 of 17

Fig. 6. Integration of human fetal and mouse embryonic cell atlases. (A to
C) After downsampling as described in the text, we applied Seurat (15) to jointly analyze
human fetal and mouse embryonic cells (11). (A) Cells are colored by source species.
(B) Mouse cells are colored by the identity of the main mouse embryonic trajectory
(11). Human cells are colored in gray. (C) Cells are colored by source and development
stage. Within each major trajectory and as has been shown previously (11), mouse
cells order by successive time points, and human fetal cells appear to project from the
last (E13.5) mouse embryonic time point. (D) We applied Seurat (15) to jointly analyze

103,766 human and 40,606 mouse hematopoietic cells. The same UMAP visualization
is shown in all panels. (Left) Cells are colored by source and development stage.
(Middle) Mouse cells are colored by the identity of mouse subtrajectory (11). Human
cells are colored in gray. (Right) Human cells are colored according to annotations
from Fig. 4B. Mouse cells are colored in gray. (E) Plot similar to (D), colored by
the normalized expression of human-mouse conserved cell type–specific genes, with
their number listed and top TFs named. UMI counts for these genes are scaled for
library size, log-transformed, aggregated, and then mapped to Z scores.
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into more fine-grained subsets. For example,
subsets of the mouse white blood cell embry-
onic subtrajectory (11) map to specific human
blood cell types such as HSPCs, microglia,
macrophages (liver and spleen), macrophages
(other organs), and dendritic cells (DCs) (Fig.
6D). These subsets were further validated by
the expression of related blood cell markers
(fig. S24C) and annotated on the basis of their
human k-nearest neighbors (k = 3) in the co-
embedding (fig. S24D).
Out of 1087 human fetal blood cell type–

specific gene markers that are also differen-
tially expressed across mouse blood cell types,
337 genes were differentially expressed (FDR
of 0.05) in the same cell type (Fig. 6E and
table S15; for comparison, only 12 genes inter-
sected after permutations of labels). In total,
28 of these 337 conserved markers were TFs,
24 of which have been previously reported to
be involved in early blood cell differentiation
or maintenance for target cell types—e.g., HLF
as a critical regulator of HSPCs quiescence
(167), MITF as driving mast cell differentia-
tion (168), PAX5 as a master regulator of B cell
development (169), and SOX6 as enhancing
the differentiation of erythroid progenitors
(170). However, 4 of the 28 conserved marker
TFs have not been previously characterized in
the relevant context: NR1D2 in IL 3 cells,
TCF7L2 in macrophages, FHL2 in megakar-
yoblasts, and NUAK1 in microglia.
In this same analysis, human fetal macro-

phage andmicroglia formdistinct clusters, but
they are connected by a subset of mouse cells
from the white blood cell trajectory (Fig. 6D),
consistent with previous studies showing that
both cell types differentiate from yolk sac pro-
genitors (171). To explore this further, we ex-
tracted and reanalyzed 4327mouse embryonic
microglia and macrophages by means of un-
supervised trajectory analysis (172).We observed
three smooth cell differentiation trajectories
from a common progenitor to microglia in
the brain, phagocytic macrophages (TIMD4+
and CD5L+; mostly in liver, spleen, and adre-
nal), and perivascular macrophages (F13A1+
and LYVE1+; widely distributed) (fig. S27A
and Fig. 5). The directionality of progression
through pseudotime along eachmacrophage
trajectory was consistent with real develop-
mental time (fig. S27B). In total, 1412 genes,
including 111 TFs, were differentially expressed
in the three macrophage branches (table S16).
For example, the microglial trajectory showed
elevated expression of BACH2 and RUNX3
as well as known microglial regulators SALL1
(173) and MEF2A (173, 174), perivascular mac-
rophages of DAB2, and TCF7L2, and phago-
cytic macrophages of MAFB and NR1H3 (fig.
S27C). Overall, these analyses illustrate how
fetal annotations can be used to identify and
characterize progenitors of specific lineages at
developmental time points where they may

be difficult to resolve on their own, even across
species.

Discussion

Two centuries after the formulation of the
cell theory—the assertion that all living things
consist of cells and that the cell is the most
basic unit of life (175)—we are on the cusp of
cataloging and characterizing all cell types
that constitute a human body, both in health
and disease. To this end, the field of single-
cell biology is progressing at an astonishing
rate, propelled by a synergy between new
technologies and new computational meth-
ods to make sense of the data produced by
those technologies. In the past few years
alone, this synergy has enabled compelling
and informative single-cell atlases of many
human organs as well as of entire model or-
ganisms (11, 51, 69, 108, 152, 176–182).
Human development is a remarkable pro-

cess that begins with a fertilized zygote and
proceeds through a germinal stage followed by
embryogenesis. By the end of the 10th week,
the embryo has acquired its basic form and is
termed a fetus. For the following 30 weeks, all
organs continue to grow and mature, with
diverse terminally differentiated cell types
arising from their progenitors. Although the
germinal and embryogenesis stages have been
intensively profiled with single-cell methods
in humans andmice (11, 180, 181), it has been
more challenging to profile the fetal stage.
Although several single-cell studies of hu-
man fetal development have recently appeared
(152, 182–184), these are restricted to individual
organs or cell lineages and do not obtain a
comprehensive view.
In this study, together with (12), we set out

to generate single-cell atlases of gene expres-
sion and chromatin accessibility using diverse
tissues obtained during human fetal develop-
ment. From 15 distinct organs, we successfully
profiled gene expression in ~4 million single
cells and chromatin accessibility in ~800,000
single cells. Limitations of these datasets in-
clude nonuniform sampling (i.e., more cells
profiled in some organs than others), missing
tissues (most notably, bone marrow, skin,
bone, and gonads), relatively low sequencing
depth, and the sparsity of single-cell molecular
profiles. Nonetheless, we identified hundreds
of cell types and subtypes that are supported
by a framework for quantifying specificity
as well as by matching nearly all of them to
cell types or subtypes from published mouse
atlases.
In contrast with organ-specific studies, the

diversity of tissues profiled here enabled cross-
tissue comparisons of broadly distributed cell
types. We emphasize that our process for anno-
tating cell types benefited tremendously from
the myriad single-cell atlases of specific human
organs or other mammals that have been

generated to date (8, 9, 11, 16, 28, 50, 108, 139).
Of course, decisions in the annotation process
can be subjective (e.g., over- versus under-
clustering), and both cell type and subtype
annotations made here should be considered
preliminary and subject to revision.
The apparent hematopoiesis that we ob-

serve in the fetal adrenal gland is consistent
with the fact that the adrenal gland, along with
many other organs (e.g., spleen, liver, and
lymph nodes), can serve as a site of extra-
medullary hematopoiesis in adults with path-
ologic conditions that lead to an increased
demand for blood cell production, particular-
ly hemoglobinopathies (185, 186). Although
occasional islands of extramedullary hemato-
poiesis have been seen in the adrenal glands
of human embryos (126, 127), our findings in
both the human and mouse provide quanti-
tative evidence that the adrenal gland serves
as a normal, albeit minor, site of erythropoi-
esis during a developmental window that over-
laps with the transition of hematopoiesis from
the liver to the marrow.
The ease with which we were able to inte-

grate single-cell profiles from mouse organo-
genesis and human fetal development is notable,
particularly given that these represent differ-
ent stages of mammalian development, not to
mention our separation from mice by >100
million years of evolution. The relatively straight-
forward alignment of the datasets highlights
the extent of evolutionary constraint on the
molecular programs of individual cell types,
and it furthermore lends support to long-
standing use of the mouse as a powerful mod-
el system for studying human development.
Looking forward, we envision that the some-

what narrowwindowofmidgestational human
development studied herewill be complemented
by additional atlases of earlier and later time
points (e.g., embryonic and adult) as well as by
similarly comprehensive profiling and integra-
tion of data from model organisms. The con-
tinued development and application of methods
for ascertaining gene expression and chroma-
tin accessibility—in concert with spatial, epi-
genetic, proteomic, lineage history, and other
information—will be necessary to obtain a
comprehensive view of temporal unfolding of
human cell type diversity that begins at the
single-cell zygote.
To date, investigations of human develop-

ment have largely been indirect, with key mo-
lecular factors nominated by human genetics
and then investigated in model organisms and/
or in vitro systems. Knowledge of the in vivo
landscape of gene expression and regulation
has been limited. In filling part of this gap,
we hope that this atlas will enable a better
understanding of the molecular and cellular
basis of both rare and common disorders of
human development, while also informing the
path to successful therapies.
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Materials and methods
A more detailed version of the materials and
methods is provided in the supplementary
materials.

sci-RNA-seq3

A more detailed version of the full sci-RNA-
seq3workflow is available on protocols.io (187)
and in the supplementary materials.

Preparation of nuclei

Human fetal tissues (89 to 125 days estimated
postconceptual age) were obtained by the Uni-
versity of Washington Birth Defects Research
Laboratory (BDRL) under a protocol approved
by the University of Washington Institutional
ReviewBoard. Tissues of interestwere isolated
and rinsed in 1X HBSS. Dried tissue was snap
frozen in liquid nitrogen, manually pulverized
on dry ice with a chilled hammer, aliquoted,
and stored at −80°C until further processing.
A subset of these aliquots were used for sci-
RNA-seq3, and others for sci-ATAC-seq3, as
described in the companion paper. For RNA-
seq, nuclei from tissues and control cell lines
were lysed in the cell lysis buffer and fixed
with ice-cold 4% paraformaldehyde (EMS, 15-4-
100) on the basis of the published sci-RNA-seq3
protocol (11). For human cell extraction in renal
and digestive organs (kidney, pancreas, intes-
tine, and stomach) and paraformaldehyde fixa-
tion,we followed theprocedure described in (13).

Immunohistochemistry

Fetal tissues were fixed in formalin and em-
bedded in paraffin. Sections of 4- to 5-mm
thickness were cut and placed on Superfrost
Plus slides (12-550-17, FisherBrand). For im-
munohistochemistry, sections were subjected
to heat-mediated antigen retrieval (pH 6.0)
followed by blocking with normal serum. Pri-
mary antibodies were incubated overnight at
4°C. The primary antibody we used: GYPA
(R&D, MAB1228, 1:250), CD34 (R&D, AF7227,
1:250),CD34 (Novus,NBP2-32933, 1:250),ANXA1
(R&D,AF3770, 1:500), TNFRS10C (R&D,MAB6301,
1:500), AFP (Novus, NBP1-76275, 1:400), ALB
(R&D, MAB1455, 1:10K), AHSG (R&D, AF1184,
1:400), and APOA1 (R&D, MAB36641, 1:250).
Species and subtype-appropriate fluorescent
dye-labeled secondary antibodies were used
(Alexa Fluor 488 and 594, 1:400, Jackson
ImmunoResearch Lab) or biotinylated sec-
ondary antibody were used followed by ABC
Elite Systems (PK-6100, Vector Lab) for 3,3′-
diaminobenzidine (DAB) chromogen staining.

sci-RNA-seq3 library construction and sequencing

The paraformaldehyde fixed nuclei were pro-
cessed similarly to the published sci-RNA-seq3
protocol (11). For paraformaldehyde fixed cells,
frozen fixed cells were thawed on 37°C water
bath, spun down at 500 × g for 5 min, and
incubated with 500 ml PBSI [1 x phosphate-

buffered saline (PBS), pH 7.4, 1% bovine serum
albumin (BSA), 1% SuperRnaseIn] including
0.2% Triton X-100 for 3 min on ice. Cells were
pelleted and resuspended in 500 ml nuclease-
free water including 1% SuperRnaseIn. 3 ml
0.1N HCl were added into the cells for 5min
incubation on ice (17). 3.5 ml Tris-HCl (pH 8.0)
and 35 ml 10% Triton X-100 were added into
cells to neutralize HCl. Cells were pelleted and
washed with 1 ml PBSR. Cells were pelleted
and resuspended in 100 ml PBSI. The following
steps were similar with the sci-RNA-seq3 pro-
tocol (with paraformaldehyde fixed nuclei)
with slight modifications: (i) We distributed
20,000 fixed cells (instead of 80,000 nuclei)
per well for reverse transcription (RT). (ii) We
replaced all nuclei wash buffer in following
steps with PBSI. (iii) All nuclei dilution buffer
were replaced with PBS + 1% BSA.

Processing of sequencing reads

Read alignment and gene count matrix gene-
ration for the scRNA-seq was performed using
the pipeline that we developed for sci-RNA-
seq3 (11) withminormodifications: Duplicates
were removed using theUMI sequence (ED< 2,
including insertions and deletions), RT index,
hairpin ligation adaptor index, and read 2 end-
coordinate.
After the single-cell gene count matrix was

generated, cells with <250 UMIs were filtered
out. Each cell was assigned to its original human
fetal sample on the basis of the RT barcode.
Reads mapping to each fetus individual were
aggregated to generate pseudobulk RNA-seq
datasets. For sex assignments,we counted reads
mapping to female-specific noncoding RNA
(TSIX and XIST) or chrY genes (except genes
TBL1Y, RP11-424G14.1, NLGN4Y, AC010084.1,
CD24P4, PCDH11Y, and TTTY14, which are de-
tected in bothmales and females). Fetuseswere
readily separated into females (more reads
mapping to TSIX and XIST than chrY genes)
andmales (more readsmapping to chrY genes
than TSIX and XIST).
Clustering analysis of pseudobulk tran-

scriptomes was done with Monocle 3/alpha
(11). Briefly, an aggregated gene expression
matrix was constructed as described above
for human fetal organs from each individual.
Samples with >5000 total UMIs were selected.
The dimensionality of the datawas reduced by
principal components analysis (PCA) (10 com-
ponents), first on the top 500 most highly
dispersed genes and then with UMAP (max_
components = 2, n_neighbors = 10, min_dist =
0.5, metric = 'cosine').

Cell filtering, clustering and marker
gene identification

For the detection of potential doublet cells and
doublet-derived subclusters from each organ,
weused an iterative clustering strategy as shown
before (11). For data visualization, cells labeled

as doublets [by scrublet/v0.1 pipeline (188)]
or from doublet-derived subclusters were fil-
tered out. For each cell, we only retain protein-
coding genes, lincRNA genes and pseudogenes.
Genes expressed in <10 cells and cells ex-
pressing <100 genes were further filtered out.
The downstream dimension reduction and
clustering analysis were done by Monocle 3/
alpha with similar settings (11). Clusters were
assigned to known cell types on the basis of
cell type–specificmarkers (table S3).We found
the above Scrublet and iterative clustering-
based approach is limited in marking cell
doublets between abundant cell clusters and
rare cell clusters (e.g., <1% of total cell popu-
lation). To further remove such doublet cells,
we took the cell clusters identified byMonocle
3 and first computed differentially expressed
genes across cell clusters (within-organ) with
the differentialGeneTest() function of Mono-
cle 3. We then selected a gene set combining
the top ten gene markers for each cell cluster
(ordered by q value and fold expression differ-
ence between first and second ranked cell
cluster). Cells from each main cell cluster
were selected for dimension reduction by PCA
(10 components) first on the selected gene set
of top cluster specific gene markers, and then
byUMAP (max_components = 2, n_neighbors =
50, min_dist = 0.1, metric = 'cosine'), followed
by clustering identification using the density
peak clustering algorithm implemented in
Monocle 3 (rho_thresh = 5, delta_thresh = 0.2
for most clustering analysis). Subclusters show-
ing low expression of target cell cluster specific
markers and enriched expression of nontarget
cell cluster specific markers were annotated as
doublets derived subclusters and filtered out in
visualization and downstream analysis. Dif-
ferentially expressed genes across cell types
(within-organ) were recomputed with the
differentialGeneTest() function ofMonocle 3
after removing all doublets or cells from
doublet-derived subclusters.

Adjudication of the 15 initially unannotated
cell types

As noted in the main text, our first round of
annotation was performed on a tissue-by-
tissue basis by comparing observed cell types
with those expected from prior knowledge of
the same tissue. In general, we recovered all or
nearly all main cell types identified by prev-
ious atlasing efforts directed at the same
organs, despite differences with respect to
species, stage of development and/or technol-
ogy. Additionally, we identified 15 cell types
that we did not at least initially expect to ob-
serve in a given tissue.We labeled these on the
basis of the top enriched differentially ex-
pressed genemarkers within that tissue, e.g.,
CSH1_CSH2 positive cells. After the initial
round of annotation, we reexamined these
15 cell types on the basis of their distribution
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in the global UMAP, whether they matched
annotated cell types in mouse atlases, their
distribution across tissues derived from differ-
ent individuals, and their potential for mater-
nal origin. Our updated interpretations are
summarized in the supplementary materials.

Clustering analysis of cells across organs

For clustering analysis of 77 main cell types
across 15 organs, we sampled 5000 cells from
each cell type (or all cells for cell types with
<5000 cells in a given organ). The dimension-
ality of the data was reduced first by PCA (50
components) on the gene set combining top
cell type–specific gene markers identified
above (table S5, q value = 0) and then with
UMAP (max_components = 2, n_neighbors =
50, min_dist = 0.1, metric = 'cosine'). Differ-
entially expressed genes across cell types were
identified with the differentialGeneTest() func-
tion of Monocle 3. For annotating cell type–
specific gene features, we intersected the cell
type–specific genes identified above with the
predicted secreted andmembrane protein cod-
ing gene sets from the Human Protein Atlas
(189), as well as the TF set annotated in the
“motifAnnotations_hgnc” data from package
RcisTarget/v1.2.1 (190).
For clustering analysis of blood cell across

15 organs, we extracted all blood cells corre-
sponding to annotated clusters of myeloid
cells, lymphoid cells, thymocytes, megakar-
yocytes, microglia, antigen presenting cells,
erythroblasts, and HSPCs. The dimensionality
of the data was reduced first by PCA (40 com-
ponents) on the expression of a gene set com-
bining the top 3000 blood cell type–specific
gene markers (table S5, only genes specifically
expressed in at least one blood cell type were
selected (q < 0.05, fold expression difference
between first and second ranked cell cluster >
2) and ordered by median q value across or-
gans) and thenwithUMAP (max_components =
2, n_neighbors = 50, min_dist = 0.1, metric =
'cosine'). Cell clusters were identified using the
Louvain algorithm implemented inMonocle 3
(louvain_res = 1 × 10−4). Clusters were assigned
to known cell types on the basis of cell type–
specific markers. We then coembedded the hu-
man fetal blood cells and a scRNA-seq atlas
of blood cells from the fetal liver (108), using
the Seurat v3 integrationmethod (FindAnchors
and IntegrateData) (15) with a chosen dimen-
sionality of 30 on the top 3000 highly vari-
able genes with shared gene names in both
datasets.
We then applied a similar analysis strategy

as above for clustering analysis of endothelial
or epithelial cells across organs. For endothe-
lial cells, we first extracted cells corresponding
to annotated clusters of vascular endothelial
cells, lymphatic endothelial cells and endocar-
dial cells across organs. The dimensionality of
the data was reduced first by PCA (30 compo-

nents) on the gene set combining top 1000
endothelial cell type–specific gene markers id-
entified above (table S5, only genes specifically
expressed in at least one endothelial cell type
were selected (q < 0.05, fold expression differ-
ence between first and second ranked cell
cluster > 2) and ordered by median q value
across organs) and then with UMAPwith the
same parameters used for blood cells. Cell
clusters were identified using the Louvain al-
gorithm implemented in Monocle 3 (louvain_
res = 1 × 10−4), and then annotated on the
basis of the tissue origin of endothelial cells.
For epithelial cells, we first extracted cells
from the epithelial cell cluster in fig. S4B,
followed by dimension reduction first by PCA
(50 components) first on the top 5000 most
highly dispersed genes and then with UMAP
(max_components = 2, n_neighbors = 50,min_
dist = 0.1, metric = 'cosine'). For validating the
tissue specific endothelial cells, we then co-
embedded the human fetal endothelial cells
and a scRNA-seq atlas of endothelial cells from
mouse adult tissues (139), using the Seurat v3
integration method (FindAnchors and Inte-
grateData) (15) with a chosen dimensionality
of 30 on the top 3000 highly variable genes
with shared gene names in both datasets.

Intradataset cross-validation analysis

For cells from each organ, we randomly sam-
pled up to 2000 cells from eachmain cell type.
We then followed the same process (101). Brief-
ly, we combined all sampled cells from each
organ and evaluated cell type specificity by
applying a fivefold cross-validation to the
dataset, with an SVM classifier (with linear
kernel). Whole transcriptome was used in cell
type prediction. We then computed the cross-
validation F1 value as cell type specificity score.
As control, we randomly permuted the cell type
labels, followed by the same analysis pipeline.
For cell type specificity analysis across all or-
gans, we applied the same analysis strategy to
the full dataset after sampling up to 2000 cells
of each main cell type.

Subclustering analysis

For each main cell type (with >1000 cells) in
each organ, we appliedHarmony/v1.0 for batch
correction and dimension reduction (102).
Briefly, the dimensionality of the data was
reduced by PCA (30 components, or 10 com-
ponents for cell types with <5000 cells) first on
the top 3000 (or 1000 for cell typeswith <5000
cells) most highly variable genes, followed by
batch correction on sample ID. Cell clusters
were identified using the Louvain algorithm
implemented in Seurat/v3.1.4 (15) (resolu-
tion = 0.5). We then applied the intradataset
cross-validation approach to evaluate the spe-
cificity of subclusters within each main cell
type. For every subcluster pair, A and B, we
computed the number of A cells mislabeled

as B cells in cross-validation analysis with
the true dataset (mislabeled cell number: n)
or the permuted dataset (mislabeled cell num-
ber: m). A large n value suggests the two sub-
clusters are not well separated by the full
transcriptome. We thus iteratively merged sim-
ilar subcluster pairs (n > m), and identified a
total of 657 subtypes across 15 organs. The in-
tradataset cross-validation approach was ap-
plied to evaluating subtype specificity within
each main cell type in each organ. To anno-
tate the identity of subtypes, we applied the
same cell type correlation analysis strategy de-
scribed in (11) to compare cell subtypes from
this study with cell types of the same organ
from the Microwell-seq based Mouse Cell Atlas
(MCA) (16). A similar comparison was per-
formed for all subtypes from the brain against
cell types annotated in a recent mouse brain
atlas (MBCA) (50).

Validating erythropoiesis in the adrenal tissues
from newborn mice

Adrenals and kidneys were harvested from
CD1 Swiss albino mice (Charles River) on the
day of birth (P0), and bone marrow cells were
flushed from the femurs of the dams. Solid
tissues were dissociated using collagenase and
stained for imaging flow cytometry using the
markers Ter119 (AF488), CD117 (PE-CF594),
CD71 (PE), CD45 (EF450), and DRAQ5. Gating
of maturing erythroblast populations was per-
formed using published methods (128) and
analyzed with IDEAS (Luminex) software.

Comparison of human and mouse
developmental atlases

We first applied a slightly modified version of
the strategy described in (11) to identify corre-
lated cell types between this human fetal cell
atlas and the mouse organogenesis cell atlas
(MOCA) (11). As a different approach, we co-
embedded the human fetal cell atlas and the
mouse organogenesis cell atlas (MOCA) (11)
using the Seurat v3 integration method
(FindAnchors and IntegrateData) (15) with
a chosen dimensionality of 30 on the top
3000 highly variable genes with shared gene
names in both human and mouse. We first in-
tegrated 65,000 human fetal cells (up to 1000
cells randomly sampled from each of 77 cell
types) and 100,000 mouse embryonic cells
(randomly sampled from MOCA) with default
parameters. We then applied the same inte-
grative analysis strategy to extracted human
and mouse cells from the hematopoietic, en-
dothelial, and epithelial trajectories.
For the coembedded human and mouse he-

matopoietic cells, we annotated each mouse
cell on the basis of its k-nearest neighbors of
human cells. We chose a small k value (k = 3)
such that rare cell types were also annotated.
Differentially expressed genes across mouse
hematopoietic cells were computed with the
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differentialGeneTest() function of Monocle
3/alpha.
Pseudotemporal ordering of mouse macro-

phage/microglia cells was done with Monocle
3/alphawith the reductionmethodof “DDRTree.”
Briefly, the top 3 principal components on
the top 500 highly variable genes were used
to construct the DDRTree pseudotime trajec-
tory with UMI number per cell as a covariate
[param.gamma = 120, norm_method = “log,”
residualModelFormulaStr = “~ sm.ns(Total_
mRNAs, df = 3)”]. The cells are separated into
three branch trajectories in the DDRTree
space. Differentially expressed genes across
the three branches were computed with the
differentialGeneTest() function of Monocle 3/
alpha. We then clustered cells with k means
clustering (k = 10) and computed the average
development time for each cluster. The pro-
genitor cell group was annotated on the basis
of the lowest average development time and
appeared at the center of the three branches.
Each cell was assigned a pseudotime value on
thebasis of its distance from theprogenitor cells.

Using the Garnett models trained on this human
cell atlas for cell type classification

The R package Garnett for Monocle 3 (version
0.2.9) was used to generate cell type classifiers
for each of the 15 tissues. Marker genes for
each cell type were assembled from literature
searches, andmodels were trained using train_
cell_classifier using default parameters and
the gene database org.Hs.eg.db (version 3.10.0).
Models were trained on the entirety of each
tissue dataset with the exception of cerebrum,
where 100,000 cells were randomly sampled
for training for computational efficiency. The
automatic and manual annotation processes
were conducted independently. To compare
cell type assignments with those obtained
throughmanual annotation (i.e., the 77main
cell types), we applied the function classifiy_
cells using the trained models with the fol-
lowing nondefault parameters: cluster_extend =
TRUE, cluster_extend_max_frac_incorrect =0.25,
cluster_extend_max_frac_unknown = 0.95.
Garnett cell type assignments that matched
the cell type assignment from manual anno-
tation were considered correct with the fol-
lowing exceptions: Garnett classification of
“Chromaffin cells”was considered correct when
manual annotation was “Sympathoblasts;” Gar-
nett classification of “B cells” or “T cells” was
considered correct when manual annotation
was “Lymphoid cells;”Garnett classification of
“Capmesenchyme cells,” “Collecting duct cells,”
“Distal tubule cells,” “Loop of Henle cells,”
“Proximal tubule cells,” and “Podocytes”were
considered correct when manual annotation
was “Metanephric cells;” Garnett classifica-
tion of “Ureter cells” and “Collecting duct cells”
were considered correct when manual anno-
tation was “Ureteric bud cells;” Garnett classi-

fication of “Pancreatic Alpha cells,” “Pancreatic
Beta cells,” and “Pancreatic Delta cells” was
considered correct when manual annotation
was “Islet endocrine cells;” Garnett classifica-
tion of “D cells” was considered correct with
manual annotation of “Neuroendocrine cells.”
To test the applicability of Garnett trained

models to future data, we applied the pancreas
model to human adult pancreas scRNA-seq
data from reference (100). The model was ap-
plied using the function classify_cells with the
same parameters as above. When comparing
cell type assignments with those provided by
the authors, we considered the following cell
types to be equivalent: acinar, Acinar cells;
ductal, Ductal cells; endothelial, Endothelial
cells; mast, Myeloid cells; macrophage, Mye-
loid cells; schwann, Glia; alpha, Pancreatic
Alpha cells; beta, Pancreatic Beta cells; delta,
Pancreatic Delta cells; activated_stellate, Pan-
creatic stellate cells; quiescent_stellate, Pan-
creatic stellate cells; and t_cell, T cells.
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