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INTRODUCTION: In recent years, the single-cell
genomics field has made incredible progress
toward disentangling the cellular heterogeneity
of human tissues. However, the overwhelming
majority of effort has been focused on single-
cell gene expression rather than the chromatin
landscape that shapes and is shaped by gene
expression. Toward advancing our understand-
ing of the regulatory programs that underlie
human cell types, we set out to generate single-
cell atlases of both chromatin accessibility (this
study) and gene expression (Cao et al., this issue)
from a broad range of human fetal tissues.

RATIONALE:Regions of accessible chromatin in
our genome, such as enhancers, play key roles
in the determination and maintenance of cell
fates. Accessible regions are also markedly en-
riched for genetic variation that contributes to
common disease heritability. The vast major-
ity of chromatin accessibility data collected to
date lacks single-cell resolution, limiting our
ability to infer patterns such as which cell types
are most relevant to each common disease. We
previously demonstrated single-cell profiling
of chromatin accessibility using combinatorial
indexing, based on two rounds of in situ molec-
ular barcoding. Here, we describe an improved
assay that uses three levels of combinatorial

indexing and does not rely on custom rea-
gents. The method, sci-ATAC-seq3, reduces
costs and opens the door to the scales necessary
for generating a human cell atlas of chromatin
accessibility.

RESULTS:We applied sci-ATAC-seq3 to 59 hu-
man fetal samples ranging from 89 to 125 days
in estimated postconceptual age and repre-
senting 15 organs, altogether obtaining high-
quality chromatin accessibility profiles from
~800,000 single cells. Gene expression data
collected on an overlapping set of tissues were
leveraged to annotate cell types. We asked
which transcription factor (TF) motifs found
in the accessible sites of each cell best explain
its cell type affiliation, revealing both known
and potentially previously unknown regula-
tors of cell fate specification and/or mainte-
nance. Many TFs could be putatively assigned
as activators or repressors depending on
whether their expression and the accessibil-
ity of their cognate motif were positively or
negatively correlated across cell types. Com-
paring chromatin accessibility from cell types
that appear in multiple tissues revealed that
whereas blood cell types are highly similar
across organs, endothelial cells exhibit organ-
specific chromatin accessibility, which appears

to be controlled combinatorially by several
TFs with overlapping expression patterns.
We leveraged our master set of 1.05 million
accessible sites, spanning 532 Mb or 17% of
the reference human genome, to score cell
type–specific links between candidate en-
hancers and genes based on coaccessibility, to
detect cell type–specific enrichment of herit-
ability for specific common human diseases,
and to identify genetic variants affecting
chromatin accessibility in cis. Comparisons
with chromatin accessibility in correspond-
ing adult tissues allowed us to identify fetal-
specific cell subtypes and nominate POU2F1
as a potential regulator of excitatory neuron
development.

CONCLUSION: Sci-ATAC-seq3 adds to a grow-
ing repertoire of single-cell methods that use
combinatorial indexing, a technical paradigm
whose advantages include exponential scaling
and greater range to profile diverse aspects of
single-cell biology. We anticipate that the inter-
section of single-cell chromatin accessibility
and gene expression will critically accelerate
the field’s long-term goal of establishing a
deep, predictive understanding of gene regu-
lation. An interactive website facilitates the
exploration of these freely available data by
tissue, cell type, locus, or motif (descartes.
brotmanbaty.org).▪

RESEARCH

Domcke et al., Science 370, 809 (2020) 13 November 2020 1 of 1

A human cell atlas of fetal
chromatin accessibility
enables the exploration of
in vivo gene regulation
across diverse cell types.
We devised a three-level
combinatorial indexing assay
(sci-ATAC-seq3) and profiled
chromatin accessibility in
~800,000 single cells from
15 fetal organs. This rich
resource enables, for example,
identification of cell type–
specific regulatory elements
and TFs, classification of
TFs into activators and
repressors, and quantification
of cell type–specific enrich-
ments of complex trait
heritability, as well as chro-
matin accessibility dynamics.
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The chromatin landscape underlying the specification of human cell types is of fundamental interest.
We generated human cell atlases of chromatin accessibility and gene expression in fetal tissues.
For chromatin accessibility, we devised a three-level combinatorial indexing assay and applied it to
53 samples representing 15 organs, profiling ~800,000 single cells. We leveraged cell types defined by
gene expression to annotate these data and cataloged hundreds of thousands of candidate regulatory
elements that exhibit cell type–specific chromatin accessibility. We investigated the properties of
lineage-specific transcription factors (such as POU2F1 in neurons), organ-specific specializations of
broadly distributed cell types (such as blood and endothelial), and cell type–specific enrichments
of complex trait heritability. These data represent a rich resource for the exploration of in vivo human
gene regulation in diverse tissues and cell types.

I
n recent years, the single-cell genomics
field has made incredible progress toward
disentangling the cellular heterogeneity of
human tissues. However, the overwhelm-
ing majority of effort has been focused on

single-cell gene expression, with far fewer in-
vestigations of the chromatin landscape that
shapes and is shaped by gene expression. This
is in part because of a relative paucity of scal-
able methods for profiling chromatin accessi-
bility, transcription factor (TF) binding, and/or
histones at single-cell resolution.
The single-cell combinatorial indexing (“sci-”)

(1) framework involves the splitting and pool-
ing of cells or nuclei to wells in which molecu-
lar barcodes are introduced in situ to a species
of interest at each round. Through successive
rounds of in situ molecular barcoding, species
within the same cell are concordantly labeled
with a distinct combination of barcodes. Sci-
assays have been developed for profiling chro-
matin accessibility [sci-ATAC-seq (ATAC-seq,
assay for transposase-accessible chromatinwith
high-throughput sequencing)], gene expression
[sci-RNA-seq (RNA-seq, RNA-sequencing)], nu-
clear architecture, genome sequence, methyl-

ation, histonemarks and other phenomena, as
well as sci- co-assays—for example, for profiling
chromatin accessibility and gene expression
jointly (1–12) [“CoBatch,” “Split-seq,” “Paired-
seq,” and “dscATAC-seq” also effectively rely on
single-cell combinatorial indexing (8–10, 12)].
Althoughwe and others have profiled chroma-
tin accessibility in >100,000 mammalian cells
(9, 12, 13), the methods used require custom-
loading of the Tn5 enzyme with barcoded
adapters and/or are limited to 104 to 105 cells
per experiment by collisions—cells receiving
the same combination of barcodes.
We developed an improved assay for single-

cell profiling of chromatin accessibility that
both uses three levels of combinatorial index-
ing and, in contrast with previous iterations of
sci-ATAC-seq and relatedmethods (1, 6, 9, 12),
does not rely on molecularly barcoded Tn5
complexes (sci-ATAC-seq3) (Fig. 1A and fig. S1A).
Rather, the first two rounds of indexing are
achieved through ligation to either end of the
conventional, uniformly loadedTn5 transposase
complex (standard Nextera), whereas the final
round of indexing remains through polymer-
ase chain reaction (PCR). Relative to two-level
sci-ATAC-seq but similar to sci-RNA-seq3, sci-
ATAC-seq3 reduces the per-cell cost of library
preparation (fig. S1B) as well as the rate of col-
lisions (fig. S1, C and D), opening the door to
experiments on the scale of 106 cells. This pro-
tocol no longer requires cell sorting, and we
also optimized ligase and polymerase choice,
kinase concentration, and oligo designs and
concentrations to maximize the number of
fragments recovered from each cell. While
maintaining an enrichment in accessible re-
gions, wemade the explicit choice tomaximize
complexity at the expense of specificity for ac-
cessible sites (Fig. 1B and fig. S1, E to G). In

particular, we found that the fixation condi-
tions could be tuned to adjust the sensitivity
(complexity) versus specificity (enrichment in
accessible sites) of the assay (fig. S1H).
As one step toward a comprehensive cell

atlas of human development (14), we set out
to generate single-cell atlases of both gene
expression and chromatin accessibility using
diverse human tissues obtained during mid-
gestation [DESCARTES, Developmental Single
Cell Atlas of gene Regulation and Expression;
descartes.brotmanbaty.org (15)]. For chroma-
tin accessibility, we applied sci-ATAC-seq3
to 59 fetal samples representing 15 organs,
altogether profiling 1.6 million cells (Fig. 1C).
We also describe profiling of gene expression
in 5 million cells from the same organs, using
an overlapping set of samples (16). The pro-
filed organs span diverse systems. However,
some systems were not accessible; bonemar-
row, bone, gonads, and skin are notably absent.
The rapid and uniform processing of heter-

ogeneous fetal tissues presents a challenge. We
developedamethod for extractingnuclei direct-
ly from cryopreserved tissues that works across
a variety of tissue types and produces homo-
genates suitable for both sci-ATAC-seq3 and
sci-RNA-seq3. For sci-ATAC-seq3,weused tissue
samples obtained from 23 fetuses ranging from
89 to 125 days in estimated post-conceptual age
(Fig. 1, D and E, and table S1). All samples were
karyotypically normal. Samples were processed in
three batches; a mix of the same sentinel human
fetal brain tissue and amouse suspension cell line
was included in each experiment to control
for batch effects and estimate collision rates.
We sequenced sci-ATAC-seq3 libraries from

the three experimental batches across five
IlluminaNovaSeq 6000 sequencing runs, gener-
ating just over 110 billion reads (55 billion read
pairs). We compared these data at the tissue
level, before splitting into single cells, against
single-ended ENCODE deoxyribonuclease-
sequencing (DNase-seq) data (fig. S2A) (17).
Although sci-ATAC-seq3 data were somewhat
less enriched in peaks (median reads in peaks:
29% for sci-ATAC-seq3; 35% for ENCODE
DNase-seq) (fig. S2B), samples from the same
tissue were comparably correlated for the two
assays (median Spearman correlation: 0.93 for
two samples from the same tissue for sci-ATAC-
seq3; 0.91 for DNase-seq), with greater techni-
cal reproducibility for sci-ATAC-seq3 (median
Spearman correlation: 0.95) (fig. S2C). Further-
more, samples clustered into their respective
tissues from these aggregate profiles, whether
analyzing the sci-ATAC-seq3 samples alone
(Fig. 1F) or the sci-ATAC-seq3 and DNase-seq
samples together (fig. S2D).
Splitting reads by sci- barcodes, we identified

1,568,018 cells (table S1), and from the barnyard
control, we estimated collision rates of 1 to
4% for the three experiments (fig. S2E) (18).
We observed no obvious batch effects (fig. S2F)
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and dropped three samples on account of poor
nucleosomal banding of their fragment size dis-
tribution (fig. S2G) and a further two samples
that captured few cells. For the remaining sam-
ples, we observed a median of 5742 nondup-
licate reads per cell (fig. S2H) and estimate
that we sequenced a median of 88% of all
nonduplicate reads per cell in these sci-ATAC-
seq3 libraries (fig. S2I).
We identified peaks of accessibility on a

tissue-by-tissue basis and then merged these
to generate a master set of 1.05 million sites
(data file S1).We filtered out lower-quality cells,
which left 790,957 single-cell chromatin acces-
sibility profiles from 53 fetal samples (data file
S2). The total number of high-quality cells per
tissue ranged from 2421 for spleen to 211,450
for liver (Fig. 1C). The median number of non-
duplicate fragments per cell for this set is 6042,
with a median of 49% overlapping the master
set of accessible sites and 19% falling near a
transcription start site (TSS) (±1 kb). We sub-
jected high-quality cells to latent semantic
indexing (19, 20), linear correction (21), and
Louvain clustering, initially obtaining 172 clus-
ters across all tissues. We further reduced
the dimensionality of each tissue dataset using

UniformManifold Approximation and Projec-
tion (UMAP) (22).

Annotating cell types

The annotation of cell types in scATAC-seq (sc,
single cell) datasets can be simplified by lever-
aging scRNA-seq datasets (13, 23–25). In order
to partially automate cell type annotations for
our sci-ATAC-seq data, we first annotated cell
types within our sci-RNA-seq data for the same
tissues (16). Second, we computed gene-level
accessibility scores for our sci-ATAC-seq data,
aggregating the number of transposition events
falling within gene bodies extended by 2 kb
upstream of their TSS. Third, we used the gene-
by-cell matrices for each data type as input to
an approach for finding likely correspondences
between clusters on the basis of non-negative
least squares (NNLS) regression (26), effective-
ly resulting in a “lift-over” set of automated
annotations for our sci-ATAC-seq clusters. Last,
wemanually reviewed these automated annota-
tions by examining pileups aroundmarker genes
for each cell type within each tissue, making
modifications to assigned labels as deemed nec-
essary (Fig. 2A and fig. S3A). Although other
approaches have shown considerable promise

for multimodal integration of single-cell data
(23), we found this cluster-to-cluster NNLS
method (26) sufficient for our purposes here
and much less computationally intensive.
Altogether, we were able to annotate 150 of

the 172 clusters (87%), or 163 of 172 (95%) if we
include lower-confidence labels. Some clusters
received the same annotation within the same
tissue andweremerged, resulting in 124 anno-
tations across all tissues. Of these, some anno-
tations were present across multiple tissues
(Fig. 2B). Collapsing across tissues resulted
in 54 distinct cell type annotations that map
1:1 to “main cell type” annotationsmade in our
sci-RNA-seq dataset (or 59 if we include lower-
confidence labels and 1:2 mappings) (Fig. 2B).
Many of the sci-RNA-seq cell types that were
not found in the sci-ATAC-seq data at this level
of resolution are small clusters that may not
have been sufficiently sampled to be detectable,
owing to the lower number of cells profiled here
[~4 million RNA (16) versus ~800,000 ATAC
high-quality cells] (fig. S3B). However, most of
the nine sci-ATAC-seq clusters that remained
fully unannotated appear to be due to unfil-
tered doublets because they are characterized
by accessibility in marker genes for multiple
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Fig. 1. Design of three-level
sci-ATAC-seq and application to
chromatin accessibility profiling of
1.6 million cells from 59 fetal
samples. (A) Schematic of sci-ATAC-
seq3. Nuclei are tagmented with
Tn5 transposase in bulk. The first
two rounds of indexing are achieved
with successive ligations to each end
of the Tn5 transposase complex,
and the third round is achieved with
PCR. (B) Comparison of complexity
and specificity achieved with different
versions of the sci-ATAC-seq protocol
in mixing experiments of mouse
and human suspension cell lines.
The estimated total nonduplicate
reads (“complexity”) for each cell
were calculated with Picard and are
displayed as violin plots on a log10
scale (115). The fraction of reads in
TSSs (FRiTSS) was calculated for
each cell in the same experiments
(bottom). Reads within 500 bp of a
Gencode TSS were considered within
the TSS. v1: species mixing experi-
ment by using our previously pub-
lished two-level sci-ATAC-seq protocol
(13); 2-level: two-level version of the
new protocol with simultaneous ligations; and 3-level: three-level version
of the new protocol. (C) Barplot showing number of cells profiled per organ
(log10 scale). Dots indicate the number of cells remaining after QC filtering
procedures. Standard: sentinel tissue (trisomy 18 cerebrum) was included in all
three experiments. (D) Barplot showing the distribution of sexes for samples
corresponding to each organ. (E) Stripchart showing the estimated post-

conceptual age of each sample. Samples are arranged by organ and slightly
jittered to avoid overplotting. (F) UMAP visualization of aggregated chromatin
accessibility profiles of single cells from each of the samples, colored by organ.
Normalized accessibility at a master set of peaks was quantified for each
“pseudobulk” sample and used as an input to UMAP. Shapes indicate the
processing batch of each sample.
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adjacent cell types in the UMAP representa-
tion (fig. S3A).
The nature of ATAC-seq data allows sexing

of cells on the basis of Y chromosome reads. In
the placenta in particular, we found that three
cell types—PAEP+,MECOM+ and IGFBP+,DKK+

cells (both initially unannotated in the RNA
data, although the labels readily lifted over to
clusters in the ATAC data), as well as placental
lymphoid cells—exhibited a significantly lower
ratio of Y chromosome–derived reads in tissues
derived frommale fetuses (fig. S3C). Consistent
with what is known about PAEP (glycodelin)
and IGFBP1, these cell types likely correspond

to maternally derived endometrial epithelial
and decidualized stromal cells, respectively
(27). This was confirmed with genotype in-
ference with souporcell (28), which addition-
ally identifies a subgroup of placental myeloid
cells as likely to be ofmaternal origin (fig. S3D).

Identifying cell type–specific TFs

We next sought to integrate and compare
chromatin accessibility in cell types across
all 15 organs. To mitigate the effects of gross
differences in the numbers of cells per organ
and/or cell type,we randomly sampled 800 cells
per cell type per organ (including unannotated

clusters; in cases in which fewer than 800 cells
of a given cell type were represented in a given
organ, all cells were taken), and we performed
UMAP visualization (Fig. 3A). Reassuringly,
cell types represented in multiple organs clus-
tered together—for example, stromal cells
(nine organs), endothelial cells (13 organs),
lymphoid cells (seven organs), and myeloid
cells (10 organs)—rather than by batch or in-
dividual (fig. S4). Developmentally and func-
tionally related cell types also colocalized, such
as diverse blood cells, secretory cells, peripheral
nervous system neurons, and central nervous
system neurons.
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Fig. 2. Identifying cell types
across 15 human organs.
(A) Summary of annotation
strategy. (Left) Cell types were
first annotated in sci-RNA-seq
data (16) gathered from matching
tissues according to marker
gene expression. (Middle) Louvain
clusters were identified in
sci-ATAC-seq data for each tissue.
Next, gene-level accessibility scores
were calculated for each of these
clusters and matched to RNA
clusters on the basis of NNLS
regression, in some cases leading
to merging of Louvain clusters.
(Right) These first-pass automated
annotations were refined by
manually reviewing the cluster-
specific accessibility landscape
around marker genes—for example,
initially unannotated cluster 8
exhibited specific accessibility
at the TTR locus—and was
therefore merged with cluster 3
(hepatoblasts). (B) UMAP
visualization and annotation of
790,957 cells profiled across
15 organs. The colors correspond
to the 54 main cell types that
were identified across the
different organs.
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A central question in developmental biology
is which TFs are involved in generating and
maintaining a diversity of cell types from an
invariant genome.We sought to leverage these
data to systematically assess which TF motifs
are differentially accessible and thus nominate
key regulators of cell fate specification and/or
maintenance in the context of in vivo human
development. Differential motif accessibility is
not proof of TF binding, so further experimen-
tal validation will be needed to confirm the
below observations.
As a first approach, we used a linear re-

gression model to ask which TF motifs found

in the accessible sites of each cell best explain
its cell type affiliation. Initially treating each
tissue independently, we identified the most
highly enrichedmotifs andTFs fromthe JASPAR
database for each of 124 cell type clusters across
all tissues, which revealed both known and po-
tentially previously unknown regulators (fig. S5).
For example, in the placenta, the motif of SPI1/
PU.1, an established regulator of myeloid line-
agedevelopment (29), is highly enriched inpeaks
of myeloid cells; the motif of TWIST-1, which is
required for the formation of stromal progen-
itors (30), is enriched in peaks of stromal cells;
and the FOS::JUNmotif is associatedwith chro-

matin accessibility in extravillous trophoblasts,
a cell type in which the corresponding AP1
complex has been described to be specifically
active (31, 32).
An unannotated cluster within the placenta

is enriched for GATA1::TAL1 motifs, which are
established regulators of erythropoiesis (33).
These cells clusterwith erythroblasts fromother
tissues in the global UMAP (Fig. 3A and fig.
S6A), andupon further inspection, key erythroid
marker genes exhibited specific promoter ac-
cessibility (fig. S6B). In the NNLS-guided work-
flow, this cluster was not annotated because
an erythroblast cluster was not detected in the
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Fig. 3. Identifying key TF regula-
tors of cell type–specific chro-
matin accessibility and their
modes of action. (A) Combined
UMAP of the entire dataset
subsampled to a maximum of
800 cells per initial cluster ID. Cells
are colored by 54 main cell types
as in (B). Groups of related cell
types are circled. (B) Fold-change
of the top enriched TF motif in
cell type–specific peaks for
all 54 main cell types. Cell types
(rows) are ordered by hierarchical
clustering of the motif enrichment
matrix (log10-scaled fold-change
of the mean motif occurrence
in peaks of this cell type relative to
the rest of the dataset, q < 0.01).
Additional enriched TF motifs
in cell type–specific peaks
are provided in data file S3.
(C) Examples of an (Left) activating
versus (Right) repressive TF
whose expression levels are
positively or negatively correlated
with motif accessibility across
cell types and tissues. Each
point indicates a cell type from
a specific tissue [color code
as in (B); shape code above].
Motif enrichment corresponds to
fold-change of the mean motif
occurrence in peaks of this cell
type relative to the rest of the
dataset. Expression values for the
TFs are from sci-RNA-seq data
collected in matching cell types
as described in (16) (natural
log of CPM+1). Correlation coefficient (R) values are Pearson correlations.
(D) Correlation of motif enrichment and expression can be used to predict the
mode of action of unclassified TFs. (Left) TFs were automatically assigned
to the category of activator, repressor, or unclear on the basis of their associated
GO terms. Pearson correlation values of motif enrichment and TF expression
were calculated across all cell types in all tissues and are shown by category
for all 455 TFs for which we have both values. Most TFs show positive
correlation values. Annotated repressors have lower median R values than
those of activators, with many of the outliers being due to missing or

misleading GO term annotations. (Right) A high absolute R value can serve to
classify TFs with unknown mode of action. An example is NFATc3, a likely
repressor based on this analysis. (E) Position weight matrices (PWMs)
identified by de novo motif search for exemplary cell types with no strong
enrichment in (B). De novo motif enrichment was performed with homer (48)
in the 2000 most specific peaks for each cell type by using CpG-matched
genomic sequences as background. The closest known motif and the score for
the motif matching process are indicated below. Further details as well as
PWMs for all cell types are provided in fig. S7.
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placenta in the sci-RNA-seq study [possibly be-
cause the placenta is one of the few tissues for
whichwehavemore cellswithATAC thanRNA
data (16)]. Thus, motif enrichment can assist
in cell type annotation, if the key regulators of
a cell type are known.
We repeated this regression analysis on the

54 main cell types observed across all tissues,
after collapsing cell types appearing inmultiple
tissues (Fig. 3B and data file S3; descartes.
brotmanbaty.org) (15). As expected, the top
motifs remained consistent with the tissue-
specific analyses as well as the literature—for
example, SPI1/PU.1 in myeloid cells (29), CRX
in retinal pigment and photoreceptor cells
(34), MEF2B in cardiomyocytes and skeletal
muscle cells (35), and SRF in endocardial and
smooth muscle cells (36). Whereas most motifs
are enriched in only one or two cell types, neu-
ronal TF motifs (37–39) are enriched in multi-
ple neuronal cell types (Fig. 3B, top left cluster).
Another exception to the cell-type specificity
of motifs is HNF1B, which is conventionally
associated with kidney and pancreas devel-
opment (40, 41) and whose motif is enriched
in 13 cell types that span a range of specialized
epithelial and secretory roles (34).
POU2F1 (POU class 2 homeobox 1) is an ex-

ample of a TF that has not previously been asso-
ciated with a particular developmental branch
but rather has been suggested to be an excep-
tion within the POU family—broadly expressed
and controlling no specific trajectory (42). By
contrast, we found that in developing human
tissues, its motif is enriched in several neuronal
cell types. Lending further support, POU2F1 is
more highly expressed in those same cell types
(fig. S6C).
Extending on this observation, we sought to

leverage an atlas of gene expression (16) tomore
generally ask whether TFs are differentially ex-
pressed in a pattern consistentwith the differ-
ential accessibility of theirmotifs. For example,
looking across all cell types annotated in the
same tissue in both datasets, the expression of
themyeloid pioneer factor SPI1/PU.1 is strongly
positively correlated with the enrichment of
its motif at accessible sites (Fig. 3C, left). This
analysis also revealed TFs with a negative cor-
relation between their expression and motif
enrichment (table S2). Upon closer inspection,
these TFs tended to be repressors. For example,
GFI1B has been described to act as a repressor
crucial to erythroblast and megakaryocyte de-
velopment by recruiting histone deacetylase
upon binding its motif and inducing closing
of the chromatin, such as at the embryonic
hemoglobin locus (43). Consistent with this,
we observed its expression to be negatively cor-
related with its motif enrichment at accessible
sites (Fig. 3C, right).
Categorizing TFs as “activators” or “repress-

ors” from GO terms, we found that TF expres-
sion andmotif accessibility tend to be positively

correlated for annotated activators and nega-
tively correlated for annotated repressors (Fig.
3D, left). Exceptions can largely be explained
by missing or conflicting GO terms, whereas
literature searches are consistent with the ob-
served correlation. Accordingly, this kind of
analysis provides a systematic approach for
classifying TFs as activators or repressors. For
example, NFATc3 is generally described as an
activator (44), but our analysis points toward a
repressive mode of action, especially in devel-
oping T cells, where it is highly expressed yet
itsmotif is depleted in accessible sites (Fig. 3D,
right). Apart from a general classification, we
also gained insight into the cell-type contexts
in which a TF might variably act as an acti-
vator or repressor. For example, TFs including
FOXO3 have been proposed to act as activa-
tors in their unmodified state but as repressors
whenphosphorylated (45),whichmight explain
its more ambiguous relationship between ex-
pression and accessibility (fig. S6D). We only
classified TFs as repressors if their presence is
linked to a reduction in accessible chromatin,
yet there are also TFs that have been reported
to repress transcription while maintaining an
accessible state at their binding sites, such as
REST (46, 47). This group of repressors is not
distinguished from activators by our analysis
(fig. S6E) because this would require further
linking to the transcriptional effect on target
genes.
A limitation of the above-described linear

regression strategy for associating cell types
with TF motifs is that it relies on databases of
known TF motifs. As a different approach, we
calculated specificity scores for each accessible
site (13), selected the 2000 most specific peaks
for each cell type, and searched de novo for
enrichedmotifs within this set compared with
CpG-matched background genomic sequences
(fig. S7 and data file S4) (48). In general, the top
de novo motifs for individual cell types agree
with the topknownmotifs identifiedwith linear
regression. Some cell types that did not have
strong matches to knownmotifs by means of
the regression strategy were nonetheless asso-
ciatedwith de novomotifs (such as endothelial,
stromal, andSchwanncells) (Fig. 3E, and fig. S7).
For endothelial cells in particular, this result is
discussed further below.

Cross-tissue analyses of blood cells and
endothelial cells

The nature of this dataset creates an opportu-
nity to investigate organ-specific differences in
chromatin accessibility within broadly appear-
ing cell types such as blood and endothelial
cells. In our first pass of cell type annotations
for blood cells, we were able to differentiate
between myeloid cells, lymphoid cells, eryth-
roblasts, megakaryocytes, and hematopoietic
stem cells (Fig. 2B). Extracting and reclustering
these blood lineages fromall organs allowed us

to additionally identify macrophages, B cells,
natural killer (NK)/type 3 innate lymphoid
(ILC3) cells, T cells, and dendritic cells, once
again adopting an RNA-assisted annotation
approach (analyzing similar cell types from
multiple tissues necessitated an additional
doublet cleaning step) (Fig. 4A).Macrophages
could be further separated into groups asso-
ciated with tissue of origin, as previously ob-
served (49), as well as phagocytic macrophages.
This latter group was identified mainly in the
spleen, followed by the liver and the adrenal
gland (fig. S8A). In contrast to the RNA, we
did not detect a separate microglia cluster in
cerebrum, likely because this is a very rare cell
type (~0.25%) (16).
Of particular interest within the blood line-

ages are erythroblasts, owing to the spatiotem-
poral dynamics of erythropoiesis during fetal
development. We initially detected this lineage
in the liver, adrenal gland, heart, and placenta
(Fig. 2B); our cross-tissue analysis additionally
identified erythroblasts in the shallowly profiled
spleen (where only megakaryocytes and mye-
loid cells were originally annotated). The ratio
of erythroblasts within the blood lineages of a
tissue is highest in the liver,which is in linewith
this organ being the primary site of erythro-
poiesis at this developmental stage, followed
by the spleen and adrenal gland (fig. S8A)
(50, 51), phenocopying the trend in the RNA
data described in (16).
Further investigating erythroblasts, we ob-

served that regions proximal to both the adult
b- and fetal g-globin genes are accessible at
this stage of development, whereas the embry-
onic e-globin gene’s promoter is inaccessible
(fig. S8B). The erythroblast cluster could be
further subdivided into five major Louvain
clusters with differential chromatin accessibil-
ity, including a distinct erythroblast progenitor
cluster (Fig. 4A and fig. S8A). Accessible sites
in the erythroblast progenitor cluster as well
as in the adjacent early erythroblast cluster
(erythroblast_3) are enriched for GATA1::TAL1
as well as other GATA motifs (Fig. 4B). Com-
parison of expression levels of various GATA
factors in erythroblast progenitors allows us
to nominate GATA1/2 as the TFs likely respon-
sible for this motif enrichment (fig. S8C). The
other erythroblast clusters, corresponding to
later stages of erythropoiesis, show motif en-
richment for NFE2/NFE2L2 (erythroblast_1)
and NFYB/KLF1 factors (erythroblast_2/4)
but amarked absence of enrichment for GATA
motif accessibility. A scRNA-seq study on the
mouse hematopoietic system reported induc-
tion of GATA2 early in erythropoiesis, with a
subsequentdecrease inGATA2 yet stableGATA1
expression (52). By contrast, a study of sorted
bulk human in vitro cultured erythroid popula-
tions revealed a decrease in GATA1 expression
fromprogenitors to differentiated erythroblasts,
as well as increased KLF1 and NFE-2 levels in
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later-stage erythroblasts (53). Our observations
align with the bulk in vitro human data on this
point and indicate that there might be epige-
netically distinct subpopulations of differenti-
ated erythroblasts (subclusters 1, 2, and 4) in
which the accessibility landscape is shaped by
non-GATA factors (Fig. 4B). For example, a
distal regulatory element upstream of GYPA,
which is used as an erythrocyte invasion recep-
tor by the malaria parasite (54), is most acces-
sible in theerythroblast_1populationandcontains
amotif that resembles theNFE-2motif (Fig. 4C).
Pseudotime analysis of hematopoietic stem

cells (HSCs) and erythroblast subpopulations
confirmed the order of progenitors and early
erythroblasts in the HSC-to-erythroblast transi-
tion; late erythroblast clusters exhibited sim-
ilar median pseudotimes, suggesting that they
might represent subpopulations of differenti-
ated erythroblasts rather than a succession of
states (fig. S9, A and B) (55). This analysis also
nominated candidate regulatory elements that
open or close over the course of erythropoiesis

(fig. S9C). Some of the top HSC- or erythroid
progenitor–specific peaks (fig. S9C) are also
accessible in bulk DNase profiles of fetal—but
not adult—adrenal tissue (56–58), supporting
the adrenal gland as a site of fetal hemato-
poiesis during normal mammalian develop-
ment (fig. S9D) (16).
Another pervasive cell type is the vascular

endothelium, which needs to perform both
constitutive and highly specialized functions
across organs, such as gas exchange in the lung
or fluid filtration in the kidney.NoTF has been
described to be exclusively expressed in vascular
endothelial cells, suggesting that the endothelial-
specific transcriptome is controlled combinato-
rially by several TFswith overlapping expression
in the endothelium (59). Consistentwith this,we
failed to observe any single, strong enrichment
in endothelial cells in our analysis of JASPAR
motifs (Fig. 3B). However, de novo motif dis-
covery on the 2000 most endothelial-specific
peaks revealed enrichment over background
genomic sequences formotifs resembling ERG

[E-26 transformation–specific (ETS)–related
gene] and SOX15 [SRY (sex determining region
Y)–box 15] (fig. S7). Thesemotifs were likely not
weighted as strongly in our linear regression
approach because they are not restricted to
endothelial cells (the ERGmotif is enriched in
megakaryocytes, and SOX15 is enriched in sev-
eral cell types), nor is expression of these TFs
limited to this cell type (fig. S10A). In line with
this, ERG has been described as a major regu-
lator of endothelial function (60) but also drives
transdifferentiation intomegakaryocytes (60,61).
We detected endothelial cells in 13 out of

15 organs, the exceptions being the more shal-
lowly profiled cerebellum and eye (Fig. 2B). In
contrast with erythroblasts (fig. S8A), extract-
ing endothelial cells and reclustering revealed
a marked separation according to tissue of
origin (fig. S10B), in spite of stringent iterative
filtering steps to remove residual contaminat-
ing doublets. Consistent with this, we also ob-
served tissue-specific aspects of endothelial gene
expression in fetal tissues (16) and previously
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Fig. 4. Identifying major
subgroups and associated
TFs in broadly distributed
lineages. (A) UMAP visualization
of 152,649 blood cells extracted
from all organs, colored and
annotated by Louvain clusters.
(B) Five TF motifs most strongly
enriched in peaks of each Louvain
cluster in (A) (log10-scaled
fold-change of the mean motif
occurrence in peaks of this cluster
relative to the rest of the dataset,
q < 10–6). Highly similar motifs,
as determined from RSAT
matrix-clustering of the JASPAR
vertebrate motif collection (116),
are indicated with horizontal bars.
(C) Example locus upstream of
GYPA with differential accessibility
across erythroblast populations.
Accessibility is summed for all
cells in each Louvain cluster, and
the scale is normalized to account
for differences in total reads per
cell as well as cell numbers across
clusters. Other blood cell types,
including megakaryocytes
(shown), have negligible accessi-
bility at this region. (D) UMAP
visualization of 27,576 vascular endothelial cells extracted from all organs and
colored by tissue of origin. Colors are as in (E). Only the top 20,000 endothelial-
specific peaks as determined in each tissue were used for clustering, merged
to 94,023 distinct peaks across all tissues. (E) Five TF motifs most strongly
enriched in peaks of each tissue group in (D) (log10-scaled fold-change of the
mean motif occurrence in peaks of this tissue group relative to the rest of
the dataset, q < 10–4). Highly similar motifs, as determined from RSAT matrix-
clustering of the JASPAR vertebrate motif collection (116), are indicated with
horizontal bars. Motifs whose TFs (or TFs with highly similar motifs) are most

highly expressed in endothelial cells from the same tissue in sci-RNA-seq data are
highlighted (colors correspond to tissues). (F) Example loci showing specific
accessibility in (left) lung or (right) liver endothelial cells. These sites also exhibit
tissue-specific accessibility in their tissue of origin (bottom) and thus are unlikely
to be consequent to residual doublets or free DNA contamination from other cell
types. The CLEC1B locus is also accessible in the small cluster of megakaryocytes
in liver and is known to be expressed in platelets (117). Accessibility is summed
for all cells in each Louvain cluster, and the scale is normalized to account for
differences in total reads per cell as well as cell numbers across clusters.
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found regions exhibiting tissue-specific chro-
matin accessibility in adult mouse endothelial
cells (13). To exclude technical sources for the
tissue-specific signal, we selected the 20,000
most endothelial-specific peaks determined
within each of the 13 tissues, merged these to
94,023distinctpeaks,andthenclusteredextracted
endothelial cells on the basis of these peaks
(Fig. 4D). The cells continued to cluster by tis-
sue, similar towhenweused all peaks (fig. S10B).
Further supporting tissue-specific differences

in the endothelial regulatory landscape, endo-
thelial cells derived from nearly all organs ex-
hibited specific TF motif enrichments within
these peaks (Fig. 4E). The TFs for many of the
enrichedmotifs are alsomost highly expressed
in endothelial cells of the matching tissue in
the RNA data (Fig. 4E) (16). These analyses are
limited to TF motifs present in the JASPAR
vertebrate database, and additional TFs appear
differentially expressed (16). Last, peaks of
accessibility closest to differentially expressed
genes have higher endothelial specificity scores
in the matching tissue for about half of the
profiled organs in the ATAC data (fig. S10C).
Examples include FOXF1, which is specifically
expressed and accessible in lung endothelium
andwhose promoter proximal region contains
a FOXA2 motif; and CLEC1B, which is both
specifically expressed in liver endothelium and
harbors aGATAmotif–containing candidate reg-
ulatory element exhibiting liver endothelium–
specific accessibility (Fig. 4F). Some, but not
all, of the enriched motifs are also enriched in
other cell types of the same tissue. Although
we cannot exclude residual contamination con-
tributing to this signal, this might also reflect
theunderlyingbiology, for example, consequent
to heterogeneous origins (62).
Overall, these findings indicate that the gen-

eral program of chromatin accessibility and
gene expression in endothelial cells, a widely
distributed cell type that needs to fill both gen-
eral and organ-specific functions, is mediated
by a combination of constitutive TFs as well as
tissue-specific TFs that may drive additional
specialization. These analyses also highlight
themerit of combining both de novomotif and
linear regression approaches across tissues
to nominate the key regulators that shape the
chromatin landscape in individual cell types.

A catalog of accessible elements in the human
genome during development

Altogether, our master set of 1.05 million sites
spans 532Mb, or 17.1% of the reference human
genome (data file S1). This extensive catalog
of accessible sites enabled several additional
analyses. First, we used Cicero to generate co-
accessibility and gene activity scores (63), anal-
yzing each of 54 cell types separately. Because
some of these were represented in several tis-
sues, 101Ciceromapswere generated altogether.
In total, we tested 159million distinct pairs of

accessible sites within 500 kb. At a coaccessi-
bility score threshold (63) of 0.1, we obtained
a catalog of 6.3 million distinct coaccessible
pairs of sites across the 101 maps, with an aver-
age of ~139,000 pairs per cell type. This cata-
log includes 1.4 million (22%) promoter-distal,
4.8 million (76%) distal-distal, and ~94,000
(1.5%)promoter-promotercandidate interactions
(data files S5 and S6; descartes.brotmanbaty.org)
(15). For example, as expected at this stage of
development, erythroblasts, but not other cell
types, exhibited coaccessibility between the
locus control region (LCR) and the fetal and
adult, but not the embryonic, b-globin gene
(fig. S11A) (64). A second example is the FOXF1
promoter (Fig. 4F), atwhich endothelial cells from
the lung, but not other tissues, exhibited co-
accessibilitywith nearby distal elements (fig. S11B).
Second, a substantial proportion of herita-

bility for common human diseases and traits
partitions to accessible chromatin, particularly
to regions that are specifically accessible in tis-
sues or cell types related to the trait or disease
in question (65–67). We previously intersected
genome-wide association study (GWAS) signals
for diverse human phenotypes with an adult
mouse single-cell atlas of chromatin accessibil-
ity and found many anticipated relationships
to be discoverable despite the considerable spe-
cies difference (13). We repeated such an anal-
ysis on these data, applying partitioned linkage
disequilibrium score regression (LDSC) (67) to
detect enrichment of human heritability for
34 phenotypes from the UK Biobank (UKBB)
within accessible chromatin for each of our
54 fetal cell types (Fig. 5A and table S3). Of
the 54 cell types, 45 had a significant enrich-
ment for at least one phenotype, whereas 32
of 34 phenotypes were enriched for at least
one cell type (the exceptions being basal meta-
bolic rate and sunburn, the latter in line with
absence of skin tissue). As expected, for exam-
ple, blood cell traits are maximally enriched in
blood cell types, neurological phenotypes in
neuronal cell types, andhighcholesterol inhepato-
blasts and intestinal epithelial cells. Further,
type 2 diabetes is not only enriched in islet
endocrine cells but also in pancreatic acinar
and ductal cells, hepatoblasts, and stomach
goblet cells; menopause age is maximally en-
riched in adrenocortical cells (fig. S11C). As
similar single-cell atlases of chromatin acces-
sibility are generated across the human life
span, it will be interesting to explore at what
time points these enrichments are maximal
for each phenotype.
Third, we sought to evaluate the suitability

of these data for identifying genetic variants
that affect chromatin accessibility in cis. Al-
though we generated data on many cells and
tissues, they were collected from a relatively
limited number of individuals, precluding the
possibility of using an association framework.
Instead, we sought to identify allelic imbalance

within individuals at heterozygous positions
(68). Specifically, we tested the liver and brain
sample from two individuals, aggregating the
reads for all cells fromeach cell type and testing
for allelic imbalance across these aggregatemea-
sures. Overall, we found 586 single-nucleotide
polymorphisms (SNPs) that exhibited a signifi-
cant allelic imbalance [20% false discovery rate
(FDR)] (tables S4 and S5). In general, the num-
ber of significant sites identified correlatedwith
the number of reads from that cell type (fig. S12,
A and B), and consequently, there were large
differences in the power to detect allelic im-
balance across cell types (fig. S12, C to F). Of
the SNPs that were heterozygous in both in-
dividuals, sites that had significant imbalance
in one individual were strongly enriched for
significant imbalance in the same tissue in the
other individual (49-fold over random for brain,
hypergeometric test P = 1.5 × 10−36; 59-fold over
random for liver, hypergeometric test P = 2.3 ×
10−60), although there was a greater degree of
sharing between the liver and brain of the same
individual (69-fold over random for one indi-
vidual, hypergeometric test P = 1.2 × 10−77;
78-fold enrichment, hypergeometric test P =
5.7 × 10−44 for the other individual). Although
not significantly enriched (P = 0.059), 25 SNPs
with allelic imbalance in at least one cell type
were previously associatedwith complex traits
in the National Human Genome Research
Institute–European Bioinformatics Institute
(NHGRI-EBI) GWAS catalog (table S6) (69).
For example, rs61851769 showsallelic imbalance
in erythroblasts and hepatoblasts in one liver
sample and was previously associated with
mean corpuscular hemoglobin (Fig. 5B) (69, 70).
The SNP disrupts a TAL1 binding site and is
upstreamofSLC30A1, a gene implicated ineryth-
ropoiesis (71). Consistent with the erythroblast-
specific nature of these annotations, we believe
that the hepatoblast signalmay come from con-
taminating erythroblasts because hepatoblast
accessibility is lost after peak module–based
doublet filtering. Another example is rs362649,
which is significant in excitatory neurons of
one individual, was previously associated with
the volume of cerebellar vermal lobules VIII to
X (72) and lies within an intron ofRELN, which
plays a role in neuronalmigration (Fig. 5B) (73).
There are many caveats to these analyses, in-
cluding the large differences in power across
cell types. Nonetheless, these results illustrate
how single-cell chromatin accessibility data
might be leveraged for the identification of
functional noncoding genetic variation with
cell-type resolution.
Fourth, analogous to grouping cells on the

basis of their shared patterns of accessibility
across sites (Fig. 3A), we can instead group
sites by their shared accessibility across cells
(74, 75). To reduce the computational complex-
ity of this task, we removed sites of <400 base
pair (bp) width and then computed a “UMAP of
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sites,” grouping 447,879 regions into 15 clusters
(Fig. 5, C and D). Applying the aforedescribed
linear regression and de novomotif search strat-
egies, most of these 15 clusters were enriched for
key TF regulators identified by our earlier analy-

ses (Fig. 5E, fig. S13A, and data file S7). Corre-
spondingly, when we determined “differential
cells” (analogous to determining differential
genes or peaks in conventional clustering of
single-cell data), we found that cells from line-

ages that match the motif enrichments define
most of these clusters (fig. S13B). Thus, most of
these clusters represent sites specifically acces-
sible in certain cell types or cell-type groups
and therefore link to cell type–defining TFs.
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Fig. 5. Heritability enrichment
and coaccessibility of candidate
regulatory regions. (A) Enrichment
of heritability for UK Biobank traits
within top 10,000 specific sites
for each cell type. Trait–cell type pairs
with no significant positive enrichment
(q > 0.2) are white. A full table of
scaled coefficients and q values for
each trait–cell type pair is provided in
table S3. (B) Example sites with
allelic imbalance. Browser tracks of
accessibility for the cell types in a (left)
cerebrum and (right) liver sample
are normalized to counts per million
reads. Results are presented as
unsmoothed base coverage. Asterisks
indicate cell types with significant
allelic imbalance. The red vertical line
indicates the position of the SNP
exhibiting allelic imbalance. The bar
plots below show the relative portions
of reads mapping to the reference
and alternative allele at that position.
Above each bar is the number of reads
overlapping the SNP for each cell
type. (C) UMAP visualization of a
subset of accessible regions from the
master set that are >400 bp (447,879
sites), by using accessibility profiles
from the subsampled cell dataset in
Fig. 3B (88,983 cells). Sites are
colored by Louvain clusters, which are
numbered according to decreasing
size and annotated into broad
categories on the basis of motif
enrichment and lineage affiliation
of enriched cells. Legend is at bottom
right of the overall figure. Cluster 0
consists of narrower sites with the
lowest accessibility across cells,
is not enriched for a clear motif, and
possibly reflects rare or transient
cell states or biological or technical
noise. (D) Same as (C), but colored by
the percentage of cells in which
sites are accessible. A version in which
the accessible percentage is binned
by content is shown in fig. S13C.
(E) PWMs identified by means of de novo motif search in each of the clusters in
(C). De novo motif search was performed with homer (48), using CpG-matched
genomic sequences as background. The top PWM per cluster 0 to 14 is labeled by
the closest known motif as determined by homer, with the score for the motif
matching process indicated in brackets. Listed below are the percentage of sites
within the cluster and CpG-matched background sequences that contain a match to
the de novo PWM, and a P value for the enrichment. Motifs associated with pioneer
TFs are in boldface. The top motif for cluster 0 is only found in 2.5% of sites and
has a poor matching score. (F) Violin plots of the distances of each group of sites in

(C) to the nearest TSS is shown. 20,000 random regions located on autosomes with
a width corresponding to the median width of all sites in (C) were used as control
(ctrl). (G) Fraction of sites within each cluster overlapping with ENCODE-defined
CTCF-bound peaks within versus outside of looping regions. All CTCF ChIP-seq
peaks overlapping CTCF motifs in looping regions in GM12878 (n = 8253 peaks) and
the same number of ChIP-seq peaks not overlapping looping regions but with
the same ChIP-seq score were selected. For each cluster in (C), the fraction of sites
overlapping these two CTCF-bound sets was calculated. The same control (ctrl)
regions as in (F) were used.
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The top cluster-defining TFs identified through
de novo motif search include several pioneer
factors, implying that sites bound by these TFs
are more likely to be concurrently accessible.
However, a few of the clusters of sites were

not enriched in a pattern that reflected a spe-
cific lineage. For example, cluster 11, compris-
ing 10,983 or 2.5% of sites, clearly corresponds
to commonly accessible promoters: Its sites are
accessible inmany cells (Fig. 5D and fig. S13C);
75% are within 1 kb of a TSS (Fig. 5F); and they
are broader, CpG rich, and conserved (fig. S13D).
In addition, this cluster is strongly enriched for
motifs commonly found in promoters—such as
various SP factors, KLF factors, NRF1, and ZFX
(fig. S13A)—and the top identified denovomotif
corresponds to the CCAAT promoter element
(Fig. 5E). In particular, this cluster is enriched
for housekeeping gene promoters [1.9-fold en-
riched, hypergeometric test P = 6.5 × 10–244;
80%of 3006housekeeping TSSs defined by (76)
are in this cluster].
Another case is cluster 1, whose 41,128 sites

are not as commonly accessible as those of pro-
moters (Fig. 5D) but are nonetheless less cell
type–specific than other clusters (fig. S13B).
These sites also have higher CpG content and
are modestly broader and slightly nearer to
TSSs than other nonpromoter clusters (Fig. 5F
and fig. S13D). Although this might reflect a
cluster of sites containing some promoters,
motifs of promoter TFs are depleted in cluster 1
(data file S7). Its only significantly enriched
motif is CTCF (Fig. 5E and fig. S13A). This sug-
gests that these coaccessible sites correspond to
TAD (topologically associating domain) bound-
aries and looping anchors, which are known to
bind CTCF and to be largely but not entirely
invariant across cell types (77).
To evaluate this hypothesis, we obtained

CTCF-boundpeak locations fromENCODE, as de-
terminedwith chromatin immunoprecipitation–
sequencing (ChIP-seq), as well as loop anchor
locations fromHi-C data in GM12878 (78), and
calculated the overlap of each cluster of sites
with CTCF-bound peaks within versus outside
of looping anchors (Fig. 5G). Most clusters
showed limited overlap. A first exception was
cluster 11 (promoters; 10% overlap with non-
looping peaks), which is in line with 20% of
CTCF sites falling in promoters (79). A second
exception was the CTCF-enriched cluster 1
(15%overlapwith looping peaks, a number that
would likely increase if Hi-C and ChIP-seq data
from all profiled cell typeswere available). This
was also the only cluster with greater overlap
with looping than nonlooping CTCF-bound
peaks. Taken together, profiling chromatin
accessibility across many tissues reveals not
only cell types but also sets of coaccessible reg-
ulatory elements—mostly lineage-specific sets,
but also promoters and looping regions.
Fifth, we compared ourmaster list of sites to

orthogonally annotated functional regulatory

regions in the human genome and accessible
regions in other species. Of human accelerated
regions (80), 66% overlap one of our peaks, as
do 75% of human VISTA enhancers (81). Non-
overlapping VISTA enhancers are slightly en-
riched for an absence of expression in transgenic
mouse assays (1.2-fold; hypergeometric testP=
6.9 × 10–8). Peaks that we assigned to the visual,
neuronal, and looping categories (Fig. 5C) are
enriched for overlap with both human VISTA
enhancers and accelerated regions, whereas
narrow, rarely accessible peaks are depleted
(fig. S14, A and B). We also compared our
master list of sites to the peak set generated by
profiling chromatin accessibility in 13 tissues
from 8-week-oldmice (13). Of the 23% of these
mouse peaks that lift over to the human ge-
nome, 60% (61,396) overlap a human peak. The
overlapping human peaks are significantly en-
riched for peaks associated with neuronal or
myelination cell types, looping anchors, and
promoters but not other cell types (such as
immune or hematopoiesis); narrow rare peaks
are depleted, as are placental peaks (placenta
was not profiled in themouse atlas) (fig. S14C).
The result is consistent with the possibility that
regulatory sites of some broad categories of cell
types (such as neuronal cells) may have expe-
rienced less evolutionary turnover between
mouse and human than others (such as im-
mune cells) (17, 82).

Comparisons of accessibility across
developmental stages

Wenext askedwhether cell type–specificmotif
enrichments are shared across developmental
stages. Many similar cell types show similar
top motifs enriched in the mouse ATAC atlas,
which was generated by profiling 13 tissues in
8-week-old mice (13), implying that these TFs
have a role in cell fate maintenance that may
be conserved across species (mouse versus
human) as well as developmental stage (adult
versus fetal) (fig. S15, A and B). POU2F1—the
motif we suggest to be important for neuronal
cells—is enriched in accessible sites of mouse
excitatory neurons, in addition to B cells (fig.
S15A). Motif enrichment patterns cluster large-
ly by cell type rather than species in a shared
heatmap (fig. S15C), with some exceptions. For
example,whereasmyeloid cells cluster together,
mouse lymphoid cells cluster separately from
human lymphoid cells, in part driven by amore
pronounced enrichment of NFKB1/2 motifs in
the mouse. This could be due to the difference
in developmental stage because NFKB1 has
been shown to be dispensable for the emer-
gence of prenatal B-1 transitional cells yet es-
sential later in development (83).
To investigate human developmental stage–

specific chromatin accessibility, we compared
our dataset with existing single-cell ATAC data-
sets in adult human tissues, namely blood and
cortex (84, 85). To remove strong batch effects

observed, we selected overlapping peaks in the
adult dataset, rescored our data on the basis of
this peak set, identified anchors, and integrated
the two datasets (fig. S16A) (23). After applying
this integration strategy, blood cells clustered
by cell type rather than stage, with fetal cells
falling closer to naive subtypes in the UMAP
visualization (fig. S16B). As with the compari-
sonwith themouse atlas, and as expected given
the relatively late stage of development that we
were interrogating,we observed similarmotifs
enriched in many blood cell types, with some
differences (fig. S16C). Again, adult B andT cells
aremore strongly enriched for NFKB1/2 (1.5- to
1.6-fold for adult B and T cells and 1.1-fold for
fetal B cells; fetal T cells showedno enrichment).
However, such comparisons are hampered by
strong batch effects owing to different sample
collection and processing as well as the re-
moval of potentiallymeaningful dataset-specific
differences in the integration workflow.
In our comparison of the developing versus

adult cortex data (85), again several cell types
overlap in the integrated UMAP representation
(fig. S17A). However, some fetal subgroups,
including the two largest excitatory neuron
subgroups, do not overlap with the adult data
(subgroups 1 and 2) (fig. S17B). The fetal cere-
bral UMAP contains more substructure than
we annotated (as do other tissues and cell
types), evidenced by cluster-specific accessibil-
ity at known neuronal subtype marker genes
(Fig. 2B and fig. S17C). For a more in-depth
analysis of one of the cell types, we sought to
further annotate subgroups of the most preva-
lent fetal cerebral cell type: excitatory neurons.
To this end, we first applied our NNLS-based
cell-type annotation strategy using single-cell
expression data from the Allen Brain Atlas,
which was collected on post mortem adult
brain samples (86). Whereas many clusters
found a match, the largest excitatory neuron
subgroup did not (subgroup 1) (fig. S17D). By
contrast, when using single-cell expression data
collected from developing cortex (gestational
week 17 to 18) (85, 87), we found that the two
largest excitatory neuron subclusters match to
newly formed migrating and maturing excit-
atory neurons, respectively (subgroups 1 and
2) (fig. S17E). Of the top 10 peaks specific to the
migrating population (subgroup 1), four lie in
the introns of neuronal genes, four lie in the
introns of noncoding RNAs, and two are distal
to transcriptional units but highly conserved in
vertebrates (fig. S18, A and B). One example of
the latter is a distal peak (>20 kb from nearest
TSS) overlapping a conserved element listed
as negative in the VISTA enhancer browser
(fig. S18A) (80).
This finer annotation also enabled us to ask

whether heritability for certain traits is dif-
ferentially enriched across neuronal subtypes.
We calculated enrichments of trait heritability
for each Louvain cluster in the cerebrum,
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instead of each cell type, compared with the
entire dataset. As expected, we observed en-
richment for various neurological traits in the
neuronal cell types but not in non-neuronal
cell types, such as brain endothelial cells (fig.
S19A). Within our broadly annotated cell types,
we observed variable enrichment for different
Louvain clusters; for example, inhibitory neu-
ron subtype 2 is strongly enriched for herita-
bility of both bipolar disorder and number of
children born to males (fig. S19B). As for the
excitatory neurons, we found that heritability
for educational attainment is more strongly
enriched in accessible sites of differentiated
deep-layer excitatory neurons thanmigrating
ormaturing excitatory neurons (fig. S19C). Con-
versely, anorexia heritability is more strongly
enriched in accessible sites of maturing excit-
atory neurons (fig. S19C).
An inspection of TF motifs differentially

enriched across excitatory neuron subgroups
revealed that POU2F1, which we showedmay
be restricted to neurons, is most strongly en-
riched in the fetal-specific migrating group,
suggesting that it might not only be involved
in maintenance but also specification of neu-
ronal fates (Fig. 6A). In line with this, an en-
hancer adjacent to POU2F1 has been shown
to be specifically active in mouse cortical pro-
genitor cells (88). To further investigate the
regulatory landscape during excitatory neuron
development, we next generated a pseudotime
trajectory, from migrating over maturing to

differentiated deep-layer neurons (Fig. 6, B
and C). Differences in the median pseudotime
of all excitatory neuron cells from individual
donors corresponded loosely to differences in
gestational age (Fig. 6C), although the number
of individuals (n= 3)was too small for detailed
investigation of this interindividual heteroge-
neity. Thousands of excitatory neuron peaks
open or close in a pseudotime-dependent man-
ner (Fig. 6D). Dynamically accessible elements
that open over pseudotime were enriched for
motifs of Rfx- and Tal-related factors impor-
tant for neuronalmaturation,whereas elements
that close over pseudotime are enriched, among
others, for motifs belonging to paired-related
homeodomain factors and POU factors, includ-
ing POU2F1 (2.2-fold change, q = 2.3 × 10–4)
(Fig. 6E). This dynamic is supported by the
matched RNA data, in which POU2F1 expres-
sion peaks early in the pseudotime trajectory of
excitatory neuron development (Fig. 6F) (16).
Similar analyses of developmental-specific cell
populations, their associated candidate regu-
latory regions, and TF motifs could be applied
to further tissues once the progenitor popula-
tion has been identified.

Discussion

Sci-ATAC-seq3 adds to a growing repertoire of
single-cell methods that use combinatorial in-
dexing, a technical paradigm whose advan-
tages over other platforms include exponential
scaling and greater rangewithwhich to profile

diverse aspects of single-cell biology (1–12). Al-
though libraries have limited complexity and
sci- protocols suffer from loss ofmaterial during
the pooling and washing steps, the results pre-
sented here and in (16) illustrate the power of
sci- methods. All experiments were conducted
by a handful of individuals in a nonproduction
environment but nonetheless resulted in very
large single-cell chromatin accessibility and
gene expression datasets.
An overarching goal of the field is to develop

an “atlas” of human gene regulation as it un-
folds across development and across the human
life span. Aside from scale, our studies differ
from other recent single-cell atlasing reports
in at least three respects. First, we sought to
profile as many tissues as possible within the
context of a single study rather than focus on a
single organ. This was both to create a broadly
useful reference atlas as well as to enable cross-
tissue comparisons of widely distributed cell
types. For example, we observed tissue-specific
chromatin accessibility and gene expression
for endothelial cells but not erythroblasts.
Second, we focused on tissues obtained

during human development. The rationale
for this choice is discussed in greater length in
(16) but includes our goal of laying a founda-
tion for the systematic investigation of genetic
disorders of development, which account for a
disproportionate proportionof pediatric disease
(89, 90). The further accumulation of similar
data from additional developmental time
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Fig. 6. Chromatin accessibility
dynamics in developing
excitatory neurons. (A) TF
motifs enriched in excitatory
neuron clusters. Fold-change
of the top five enriched TF
motifs in cluster-specific peaks
for each of seven Louvain
clusters that were annotated as
excitatory neurons (log10-scaled
fold-change of the mean motif
occurrence in peaks of this cell
subtype relative to the rest of the
excitatory neurons, q < 0.01).
POU2F1 enrichment is highlighted
with a vertical box. (B) UMAP
visualization and pseudotime tra-
jectory path of 48,733 excitatory
neurons colored by Louvain cluster.
Color legend is in (A). (C) Pseudotime
of excitatory neurons. (Left) UMAP visualization colored by pseudotime
and (right) boxplots of median pseudotime per individual donor. Estimated
gestational age is indicated above the boxplots. (D) Smoothed pseudotime-
dependent accessibility curves of excitatory neurons, generated by a
negative binomial regression and scaled as a percent of the maximum
accessibility of each site. Sites (rows) are sorted by the pseudotime at
which they first reach half their maximum accessibility. A random 10% of
accessible sites was selected, and 3387 sites with pseudotime-dependent
accessibility (P < 0.05, Wald test) are shown. Peaks from fig. S18A are

indicated with arrows. (E) Motif enrichments in dynamically accessible sites
from (D). Coefficients from logistic regression model by using the presence
or absence of a given motif in each site to predict whether the site has a
given accessibility trend. Plots show the top motifs ordered by Benjamini-
Hochberg corrected q value for each category (q < 0.05); similar motifs are
grouped together. (F) Expression dynamics of POU2F1 over pseudotime
in excitatory neurons. Smoothed POU2F1 expression in matching excitatory
neurons from (16) was normalized by size factor in each single cell, then
log-transformed and scaled.
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points in bothmouse and humanwill enable a
systematic understanding of in vivo emergence
and differentiation of mammalian cell types.
Third, we chose to study not only single-cell

gene expression but also chromatin accessibil-
ity, in the same tissues and where possible
from identical samples (16). Genomic regions
exhibiting cell type–specific chromatin acces-
sibility generally correspond to DNA regula-
tory elements such as enhancers and thus
afford the opportunity to understand not only
the “output” of the genome in particular cell
types but also the regulatory program that
underpins that output. The aggregate of all
accessible regions that we identified spans 17%
of the human genome, which is in line with
recent bulk DNase-seq profiles from fetal tis-
sues (91). Most of these ~1 million elements
are cell type–specific or cell type–restricted in
accessibility, although a large group of shared
elements likely corresponds to looping anchors.
Further studies (for example, those based on
evolutionary conservation, massively parallel
reporter assays, and/or CRISPR perturbation)
are necessary to validate these candidate regu-
latory elements as well as their Cicero-based
candidate linkages to target genes.
An interactive website facilitates the explo-

ration of these data by tissue, cell type, locus, or
motif (descartes.brotmanbaty.org) (15). Beyond
constituting a rich andeasily accessible resource
for the field (for example, providing individual
researchers with information on their gene,
enhancer, or cell type of interest), this dataset
also enables us to learn about more general
aspects of gene regulation. For example, lever-
aging that we have matching chromatin acces-
sibility and gene expression data spanning so
many tissues and cell types allows us to study
the mode of action of TFs as well as organ-
specific differences in the regulatory land-
scape of cell types or cell type–specific disease
heritability. Because the underlying methods
are relatively new, there is currently a paucity
of single-cell chromatin accessibility datasets
in the public domain. We anticipate further
comparisons to adult humans (92) or other spe-
cies (13) as more such data become available.
The breadth and resolution of this dataset

also provides insights into specific develop-
mental processes. POU2F1 is one of the earliest
described mammalian TFs (93). It is thought
to be the only known POU family member not
expressed in a specific temporal or spatial pat-
tern, and in spite of being the subject of many
studies, to date POU2F1’s role has remained
elusive (42, 94). Although it has been suggested
to be involved in housekeeping gene regulation
or tumorigenesis, knockdowns in cancer cell
lines showed no growth defect (42). The single-
cell resolution provided by this study reveals
that POU2F1 is more highly expressed in neu-
ronal cell types, and its motif is specifically en-
riched in neuronal regulatory regions. Because

we captured developing neurons in our profil-
ingwindow,we could observe that thismotif is
most highly enriched in the developing popu-
lation of excitatory neurons, which is mirrored
by POU2F1 expression dynamics. POU2F1 and
its binding sites are highly conserved (42), and
we also observedmotif enrichment inmouse
excitatory neurons, implying that this TF is a
conserved inducer and maintainer of excita-
tory neuron cell fate. In line with this, POU2F1
deficiency is embryonic lethal (95). This exam-
ple illustrates the power of combined chroma-
tin accessibility and gene expression data at
single-cell resolution. We anticipate that fur-
ther such examples will emerge withmore in-
depth analyses of other tissue systems, stages,
and cell types.
These and other downstreamanalyses used

stratifications of accessibility that were based
on our cell-type annotations. Although our
assignments appear appropriate given that
they generally recapitulate known biology in
downstream analyses, they should be regarded
as preliminary and will likely necessitate ad-
justments as more atlases and improved data
become available. We intentionally kept our
cell-type annotations rather broad, but there
is more substructure in the data that could be
explored further by subclustering—for example,
as we show for blood cells and excitatory neu-
rons. Although we are undoubtedly missing
many cell types because of shallow profiling of
several tissues or insufficiently aggressive clus-
tering, wewere nonetheless able to derive chro-
matin accessibility profiles and key regulators
for some rare and potentially previously un-
known cell types.
The analyses that we present here are only a

starting point. Many other facets can be ex-
plored directly from these data—for example,
nominating sets ofTFs thatmust be coexpressed
in the same cell type in order to bind regulatory
regions cooperatively. In addition, these data
can directly be used as input tomachine learn-
ing models—for example, to predict the effect
of all disease-associated variants identified in
the human genome on chromatin accessibility
across all cell types (96). We foresee that the
true power of single-cell methods will lie in
combining descriptive resources as we present
here with both machine learning and high-
throughput perturbation, with the long-term
goal of establishing a deep, predictive under-
standing of gene regulation in human devel-
opment and disease.

Materials and methods

Amore detailed version of materials andmeth-
ods is provided as supplementary materials.

sci-ATAC-seq3

A more detailed version of the full sci-ATAC-
seq3 workflow is available on protocols.io (97)
and in the supplementary materials.

Preparation of nuclei
Human fetal tissues (89 to 125 days estimated
post-conceptual age) were obtained by the
University of Washington Birth Defects Re-
search Laboratory (BDRL) under a protocol
approved by the University of Washington
Institutional Review Board. Tissues of interest
were isolated and rinsed in 1XHanks’ balanced
salt solution. Dried tissue was snap frozen in
liquid nitrogen, manually pulverized on dry ice
with a chilled hammer, aliquoted, and stored
at –80°C until further processing. A subset of
these aliquots were used for sci-ATAC-seq3,
and others were used for sci-RNA-seq3, as de-
scribed in the companion paper (16). For ATAC,
nuclei were lysedwith Omni-ATAC lysis buffer
(98), cross-linked with 1% formaldehyde, and
snap frozen in freezing buffer (99).

sci-ATAC-seq3 library construction
and sequencing

Frozen fixed nuclei were thawed, resuspended
in Omni lysis buffer (98), and diluted in ATAC–
resuspension buffer (RSB) buffer (10 mM
Tris-HCl pH 7.4, 10 mM NaCl, 3 mM MaCl2)
supplemented with 0.1% Tween-20. For three-
level indexing experiments at 3843, the nuclei
input number was 4.8million at 50,000 nuclei
per well spread across 96 reactions. We pro-
filed 24 individual tissue samples per batch
(table S1), in which the 24th sample was amix-
ture of sentinel tissue (trisomy 18 cerebrum)
and a mouse cell line (CH12-LX). For each
sample, 200,000 nuclei were pelleted and re-
suspended in tagmentation reactionmastermix
(Nextera TD buffer, 1X Dulbecco’s phosphate-
buffered saline, 0.01% Digitonin, 0.1% Tween-
20). Nuclei in tagmentation reaction master
mix were aliquoted into four wells per tissue
sample across a LoBind 96-well plate, 2.5 ml of
Nextera v2 enzyme were added per well, and
the plate was incubated at 55°C for 30 min.
Tagmentation reactions were stopped by add-
ing stop reaction mixture (40 mM EDTA with
1 mM Spermidine) and incubating at 37°C for
15 min. Tagmented nuclei from each sample
were pooled (24 sample tubes in a batch),
pelleted, washed, and resuspended in ATAC-
RSB with 0.1% Tween-20. After adding phos-
phorylation master mix [1X polynucleotide ki-
nase (PNK) buffer, 1 mM rATP, T4 PNK], the
phosphorylation and nuclei reaction mix was
aliquoted across a total of 16 wells in four
LoBind 96-well plates and incubated at 37°C
for 30min. Ligation master mix (1X T7 ligase
buffer, N5_splint, T7 DNA ligase enzyme) was
added to the nuclei in the phosphorylation
reaction followed by N5_oligos (384 distinct
N5 barcodes). Sequences of all splint and bar-
code oligos used for sci-ATAC-seq3 are pro-
vided in table S7. Plates were incubated at
25°C for 1 hour. After this first round of liga-
tion, stop reactionmixture was added, and the
plateswere incubated at 37°C for 15min.Wells
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were pooled, and nuclei were transferred into
a 50-ml falcon tube, pelleted, andwashedwith
ATAC-RSB with 0.1% Tween-20. The nuclei
were then resuspended in N7 ligationmaster
mix (1X T7 ligase buffer, N7_splint, T7 DNA
ligase). This ligation and nuclei master mix
was aliquoted into four 96-well LoBind plates,
and N7_oligos (384 distinct N7 barcodes) were
added to each well across four 96-well plates.
Plates were incubated at 25°C for 1 hour before
adding stop reactionmixture and incubating
the plates at 37°C for 15min.Wells were pooled
and nuclei transferred into a 50-ml falcon tube,
pelleted, and resuspended in Qiagen EB buffer.
Then, 1000 to 3000 nuclei were aliquoted per
well across four 96-well LoBind plates. To re-
verse cross-link the nuclei, we added a reverse
cross-link master mix of EB buffer, PNK, and
1% SDS to each well. Plates were incubated at
65°C for 16 hours. A test PCR amplification was
performed, and the reaction was monitored
with SYBR green on several wells of a plate to
determine the optimal cycle number (1). On
the basis of this test PCR result, the rest of the
reversed cross-linked plates were amplified
with Nextera PCR Mastermix (NPM), bovine
serum albumin, indexed P5 oligo, and indexed
P7 oligo. Amplification products were pooled
and purified first by using Zymo Clean &
Concentrate-5 and then 1X AMPure beads.
Final libraries were quantified on an Agilent
4200 Tapestation System. A 2 nM pool was
created from equimolar pooling and sequenced
with custom recipe and primers (sequences are
provided in table S7) on an Illumina NovaSeq
6000 sequencer with custom sequencing re-
cipe (read 1: 51 cycles, read 2: 51 cycles, index
1: 10 cycles+15 dark cycles+10 cycles, index
2: 10 cycles+15 dark cycles+10 cycles).

Data processing for sci-ATAC-seq3

Amore detailed version of all data processing
and analysis steps is available in the supple-
mentarymaterials. A demultiplexing script and
tutorial are provided on Zenodo at (100).
Data processing for the barnyard experi-

ments conducted to develop sci-ATAC-seq3
was done as previously described (13). Methods
for processing sequencing data from the tissue
samples closely follow themethods used in (13)
as well, albeit with numerous optimizations to
scale to larger datasets.
Cell barcodes were separated from the dis-

tribution of background barcodes by fitting a
mixture of two negative binomials (noise versus
signal). Nonduplicate fragment endpoints for
each cell were used for peak calling in each
sample by use of MACS2 (101). Peak calls from
all samples included in downstream analysis
were merged to form a master set of peaks. For
each sample, we created sparse matrices count-
ing (i) reads falling within the master set of
peaks and (ii) reads falling within gene bodies
extended by 2 kb upstream for each cell. We

additionally tabulated the total number of
reads from each cell coming from annotated
TSSs (±1 kb around each TSS), ENCODE black-
list regions, and our set of merged peaks for
quality control (QC) purposes. To filter out low-
quality cells, we chose tissue-specific cut-offs
for the fraction of nonduplicate reads in peaks
(minimums ranging from 20 to 40%) and the
fraction of nonduplicate reads falling in TSSs
(minimums ranging from 5 to 15%) by means
of visual inspection of their distributions for
each sample (for example, for some tissues we
observed a bimodal distribution for the frac-
tion of nonduplicate reads in peaks and removed
the lowermode), and a global cutoff of 0.5% of
nonduplicate reads coming from ENCODE black-
list regions. All downstream steps were performed
one tissue at a time by pooling cells passing
QC from all samples of a given tissue. We used
a modified version of the scrublet (102) algorithm
to remove the cells most likely to be doublets.

QC of sci-ATAC-seq3 data in bulk

After initial processing of the data, we assessed
its quality relative to bulk DNase-seq profiles
generated on fetal tissues procured from BDRL
by the Roadmap Epigenomics consortium (58).
After reprocessing the DNase-seq data in a
comparable manner, we generated a master
list of peaks across all DNase-seq and sci-ATAC-
seq3 samples by merging all peaks called on
each individual sample and generated a matrix
of reads by peaks for each sample. This matrix
of read counts was then used to calculate pair-
wise Spearman correlations to evaluate how
similar samples were in their distributions of
accessibility.

Dimensionality reduction and clustering

For dimensionality reduction, we found that
the implementation of latent semantic index-
ing [LSI; or equivalently, latent semantic anal-
ysis (LSA)] that we have previously applied
(13) did not performwell on data collected in
this study, likely owing to sparsity. Log-scaling
the term-frequency term in LSI resulted in very
similar performance to those of the other tools
we tested (103, 104). We suspect that this is due
to the exponential distribution of total counts
per cell and the impact of strong outliers on the
principal components analysis (PCA) step of
LSI in the absence of log scaling.
We performed LSI on the binarized peak-by-

cell matrix for all cells passing QC from each
tissue, one tissue at a time. We first weighted
all the sites for individual cells by log(total
number of peaks accessible in cell) (log-scaled
“term frequency”). We then multiplied these
weighted values by log(1 + the inverse fre-
quency of each site across all cells), the “inverse
document frequency.” We used singular value
decomposition on the term frequency–inverse
document frequency matrix to generate a
lower-dimensional representation of the data

(PCA) by only retaining the 2nd through 50th
dimensions (the first dimension tends to be
highly correlated with read depth). L2 normal-
ization was performed on the PCA matrix to
further account for differences in the number
of nonduplicate fragments per cell. This L2-
normalized PCAmatrix was used for all down-
stream steps.
Although we did not observe evidence for

substantial batch effects between samples, we
nonetheless applied the Harmony batch cor-
rection algorithm on the PCA space to correct
batch effects between different samples (20, 21).
This corrected L2-normalized PCA space was
used as input to Louvain clustering andUMAP
as implemented in Seurat V3 (105).

Cell type annotation

To transfer cell type labels for our Louvain
clusters from the companion sci-RNA-seq
data, we used anNNLS-based cluster-by-cluster
annotation approach, which we have imple-
mented previously to transfer labels between
single-cell RNA-seq datasets (26). Briefly, we
predicted the gene expression of target cell
type in dataset A with the gene expression of
all cell types in dataset B, and vice versa, and
then multiplied the resulting bs to determine
thematching of cell types between the two data
sets with high specificity. To calculate gene
level accessibility scores from ATAC data, we
summed the accessibility over gene bodies
extended by 2 kb upstream of their TSS. In
addition to determining the NNLS score for
each cell type or cluster, accessibility close to
known cell type marker genes [described in
(16)] was inspected for each cluster in each
tissue (summed over all cells in that cluster).
Clusters that had a high score in the NNLS
and/or clear specific accessibility at matching
marker genes were annotated accordingly.
Clusters without strong NNLS signal and
weaker or less specific marker gene accessi-
bility received a less confident annotation.
Clusters with no NNLS signal and no or only
uninformative marker gene expression were
left unannotated. In some cases, several Louvain
clusters received the same cell type annotation
within a tissue and were merged accordingly
for downstream analyses.
The same strategy was applied to transfer

labels from adult or fetal expression data of
human cortex. Processed gene-by-cell matrices
were downloaded from the Allen Brain Map
website for the adult data and from (87) for
the fetal data.

Determining maternal contribution to cell types

To identify cell types with a lower fraction of
Y chromosomal reads within a tissue, we
selected all individual tissue samples with at
least 800 cells and subsampled each cell type
to 150 cells. For each tissue sample, we then
calculated the ratio of Y chromosome over
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autosome reads for these cells. As an additional
line of evidence, we also used souporcell (28),
a tool recently developed for clustering cells
based on genotypes without a priori knowl-
edge of individual genotypes.

Specificity scores

Cell type–specificity scores for each site–cell
type pair were calculated by using Jensen-
Shannon divergence as previously described
(13). A list of the top 10,000most specific peaks
per cell type is provided in data file S4. Similarly,
we calculated tissue specificity scores for cross-
tissue analysis of shared cell types (fig. S9C).

Motif enrichments

We generated a binarized peak-by-motif matrix
by identifying occurrences of motifs from the
JASPAR vertebrate motif database (106) in
each peak at a P value threshold of 10–7 using
GC matched background nucleotide compo-
sition. A matrix of motif-by-cell counts was
obtained bymultiplying the peak-by-cell ma-
trix with the peak-by-motif matrix. We down-
sampled the dataset so that a maximum of
800 cells per cell type, including unannotated
clusters, were included to reduce computa-
tional cost and to reduce overrepresentation
of very abundant cell types and tissues in com-
puting enrichments in downstream steps. For
each annotation, we then performed a nega-
tive binomial regression, predicting totalmotif
counts using two input variables: an indicator
column for the annotation as the main varia-
ble of interest and log(total number of nonzero
entries in input peak matrix) for each cell as
a covariate. We used the coefficient for the
annotation indicator column and the inter-
cept to estimate the fold change of the motif
count of the annotation of interest relative to
cells fromall other annotations– exp(intercept +
annotation_coefficient)/exp(intercept). This test
was performed for all motifs in all groups, and
P values were corrected by using the Benjamini
Hochberg procedure.
For de novomotif finding, the top 2000 sites

were selected by specificity score for each cell
type (data file S4). We then ran homer (v4.11)
using findMotifsGenome.pl with the specifica-
tion -noknown -cpg (48). Matches to known
motifs and scores were obtained from the stan-
dard homer output.

Trajectory analysis

Cells were subjected to trajectory analysis with
Monocle3, similar to as previously described
(26, 55, 63). When determining sites that
changed over pseudotime, 10% of accessible
sites (~50,000) were sampled to reduce com-
putational complexity. Motifs enriched in sites
with significant changes over pseudotime were
determined by use of a logistic regressionmod-
el predicting accessibility trends (opening or
closing)with the presence or absence of JASPAR

motifs called in the peak-by-motif matrix. For
comparison with excitatory neuron dynamics
in sci-RNA-seq data, excitatory neurons were
extracted and compared with single-cell RNA-
seq data from (107) with a previously described
NNLS-based matching technique to identify
progenitor andmatureneuronpopulations (26).
Pseudotime was determined with Monocle3,
and expression of the gene of interest was
normalized by size factor in each single cell,
then log-transformed, scaled, and plotted over
pseudotime.

Cicero models

Cicero coaccessibility analysis was performed
for each of the 54main cell types in each tissue
(101 cell type–tissue combinations). Because
coaccessibility scores are sensitive to false posi-
tives because of residual inter–cell type doublets
driven by imperfect tissue dissociation, tissues
were subjected to stringent doublet filter-
ing on a per-tissue basis. To this end, the top
5000 specific peaks were selected per cell type
(peak modules); each cell type was subclus-
tered by using the union of these peakmodules
and a higher resolution, and subclusters with
high accessibility in a peak module not match-
ing the cell type in question were excluded.
After applying this strategy, 91% of all cells
were retained and subjected to coaccessibility
score analysis. This stringently filtered dataset
of 720,613 cells is provided at (15) and on the
Gene ExpressionOmnibus (GEO) (GSE149683).
The Cicero R package for Monocle3 (version
1.3.4.5) (63) was used to generate coaccessibility
scores for each pair of sites within 500 kb in
the linear genome and accessibility in at least
10 cells. Cicero gene activity scores were also
generated by using default parameters.

Heritability enrichments

Heritability enrichments were calculated sim-
ilar to our previous work (13). Our input set of
peaks for each annotated cell type (without
any distinction between the same annotation
occurring across different tissues) were the
top 10,000 peaks as ranked by specificity score
within this set of annotations. UKBB traits
were downloaded from (108). Only traits with
an estimated heritability of 0.01 or higher were
carried forward for analysis. P values were cal-
culated from z scores assigned to coefficients
(assuming two-sided test), and coefficients
were divided by the average per-SNP herita-
bility for the trait associated with a given test,
producing scaled coefficients. Tests were cor-
rected for multiple hypothesis testing by using
theBenjamini-Hochbergmethod, andonly tests
with a q value of 0.2 or lower were deemed to
be significant.

Testing for allelic imbalance

In order to identify genetic variation influenc-
ing chromatin accessibility levels, we used the

“Quantitative Allele-Specific Analysis of Reads”
(QuASAR) package in R (68). All reads from the
selected samples were first remapped with
HISAT2 (109), a SNP-aware aligner, to remove
any positions showing an allelic mapping bias.
Properly mapping reads were then sorted into
individual bam files per cell type per individ-
ual. For each cell type, we generated a pileup
file using Samtools (110) and considering all
common SNPs from dbSNP144 (111). After fil-
tering, we ran the analysis on all cell types from
a sample at the same time using default pa-
rameters. The resultingP valueswere thenFDR-
corrected by using the Benjamini andHochberg
method (112) for each sample independently.
Any q values less than 0.2 were considered sig-
nificant. The method we used does not require
prior genotyping, but because we had geno-
typed the individuals, we were able to confirm
that sites inferred to be heterozygous in our
analysis were also identified as heterozygous
on the genotyping array: 2253 of 2254 (99.96%)
overlapping SNPs for one individual and 6059
of 6065 (99.90%) for the other individual.

UMAP of sites

To reduce computational complexity, we used
the peak-by-cell matrix based on 88,983 sub-
sampled cells (subsampling up to 800 cells per
cell type in each tissue, including unannotated
clusters) and filtered out peaks smaller than
400 bp because these were less conserved and
found in fewer cells. We transposed the result-
ing peak-by-cell matrix (447,879 by 88,983) and
proceeded with Louvain clustering and UMAP
visualization as above. To determine overlap of
sites with regions bound by CTCF in GM12878,
we downloaded the ChIP-seq peak locations
from ENCODE (56, 57). To determine over-
lap with looping anchors from Hi-C data in
GM12878, we compared with loop annota-
tions returned by the loop-calling algorithm
HiCCUPS (78).

Comparison with mouse ATAC atlas

To compare peak coordinates, mouse peaks
from (13) were lifted over frommm9 to hg19 by
using the University of California, Santa Cruz
liftOver tool (113). To compare cell type–specific
motif enrichments, a peak-by-motif matrix was
generated for all mouse peaks and cell types
from (13) by using the samemotif database and
P value cutoff, and motif enrichment analysis
was conducted as described above.

Comparison with adult single-cell ATAC-seq data

Comparison with adult single-cell ATAC-seq
data was performed on peak-by-cell matrices.
For blood (63,883 nuclei from adult bonemar-
row and peripheral blood profiled on the 10X
platform), this matrix was directly downloaded
(84); for cortex (12,557 nuclei frompost-mortem
human brain profiled with sn-ATAC-seq), it
was generated from the snap file and peak calls
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provided by the authors (85, 104). Fetal and
adult peaks from both master lists were inter-
sected, and 100,000 overlapping peaks were
randomly sampled from the adult peak set to
reduce computational complexity. Then the
fetal data, downsampled to 1500 cells per
Louvain cluster, was rescored on the basis of
these peaks. Subsequently, the datasets were
integrated by using integration anchors and
the Signac package (23, 114). For motif anal-
ysis, a peak-by-motif matrix was generated for
all peaks in the adult blood dataset by using
the same motif database and P value cutoff as
described above, and motif enrichment calcu-
lation was carried out accordingly.
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