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Abstract

Background: Mammalian development is associated with extensive changes in
gene expression, chromatin accessibility, and nuclear structure. Here, we follow such
changes associated with mouse embryonic stem cell differentiation and X
inactivation by integrating, for the first time, allele-specific data from these three
modalities obtained by high-throughput single-cell RNA-seq, ATAC-seq, and Hi-C.

Results: Allele-specific contact decay profiles obtained by single-cell Hi-C clearly
show that the inactive X chromosome has a unique profile in differentiated cells that
have undergone X inactivation. Loss of this inactive X-specific structure at mitosis is
followed by its reappearance during the cell cycle, suggesting a “bookmark”
mechanism. Differentiation of embryonic stem cells to follow the onset of X
inactivation is associated with changes in contact decay profiles that occur in parallel
on both the X chromosomes and autosomes. Single-cell RNA-seq and ATAC-seq
show evidence of a delay in female versus male cells, due to the presence of two
active X chromosomes at early stages of differentiation. The onset of the inactive X-
specific structure in single cells occurs later than gene silencing, consistent with the
idea that chromatin compaction is a late event of X inactivation. Single-cell Hi-C
highlights evidence of discrete changes in nuclear structure characterized by the
acquisition of very long-range contacts throughout the nucleus. Novel
computational approaches allow for the effective alignment of single-cell gene
expression, chromatin accessibility, and 3D chromosome structure.

Conclusions: Based on trajectory analyses, three distinct nuclear structure states are
detected reflecting discrete and profound simultaneous changes not only to the
structure of the X chromosomes, but also to that of autosomes during
differentiation. Our study reveals that long-range structural changes to chromosomes
appear as discrete events, unlike progressive changes in gene expression and
chromatin accessibility.
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Background
Embryonic development is associated with genome-wide changes in gene expression,

including silencing of pluripotent genes and onset of gene expression specific to various

cell lineages. Global changes in gene expression are correlated with a drastic remodel-

ing of the epigenetic landscape of chromatin, changes in DNA replication timing, and

reorganization of the three-dimensional (3D) nuclear structure [1–5]. While studies

have followed 3D structure remodeling events during development, most have been fo-

cused on very early developmental stages after fertilization and few have addressed

events at the chromosomal scale in single cells.

Mammalian X chromosome inactivation (XCI), which randomly silences one of the

two X chromosomes in early female embryogenesis, epitomizes a chromosome-wide

change in gene expression and 3D structure and takes place during early development

[6]. XCI is initiated by Xist, a long non-coding RNA (lncRNA) that coats in cis the fu-

ture inactive X chromosome (Xi) and recruits/removes specific proteins or protein

modifications to silence X-linked genes and condense the Xi into a heterochromatic

structure [7, 8]. Studies using sequencing-based assays and imaging to follow in vitro

differentiation of female mouse embryonic stem cells (ESCs) provide a roadmap of the

dynamics of gene silencing and structural organization of the Xi during the onset and

establishment of XCI [9]. Xist RNA interacts with RNA-binding proteins and master

structural proteins, which help reshape one of the two X chromosomes into a unique

condensed bipartite structure [7, 9–11]. In both human and mouse, the two superdo-

mains of long-range chromatin interactions are separated by a hinge region containing

the conserved lncRNA locus DXZ4/Dxz4 that represents a structural platform for fre-

quent long-range contacts with multiple X-linked loci [12–18]. Once established, gene

silencing and condensation of the Xi bipartite structure are stably maintained in som-

atic cells. However, studies of Xi-specific epigenetic and structural features point to

mechanistic differences between establishment and maintenance of XCI [14, 18–24].

Our understanding of molecular and structural events associated with embryonic de-

velopment, cell differentiation, and XCI is heavily based on ensemble datasets derived

from bulk cells or tissues, which fail to address cell-to-cell dynamics of 3D structure

and gene expression regulation, especially in relation to the cell cycle and stem cell dif-

ferentiation [1–3, 5, 25, 26]. Cell-to-cell variability in allelic gene expression has been

reported based on single-cell RNA-seq analyses in mouse and human systems in which

alleles can be distinguished [27–31]. Furthermore, super-resolution microscopy and

single-cell Hi-C reveal variable 3D structures among nuclei, in part reflecting cell cycle

changes [32–44]. Hence, methods have been developed to analyze single-cell Hi-C data

and extract topics to accurately classify cell types in spite of variability among individ-

ual cells [45]. Single-cell omics, especially Hi-C, have not been systematically applied to

stages of ESC differentiation for a comprehensive integration of allele-specific data on

gene expression, chromatin accessibility, and 3D nuclear structure.

To gain insights into cellular heterogeneity and allelic dynamics in the structure and

gene expression landscape of the genome during ESC differentiation and during XCI,

we applied a single-cell combinatorial indexed (sci) approach for Hi-C, RNA-seq, and

ATAC-seq [36, 46, 47]. These sci-omics analyses were carried out in parallel in a time

course of differentiation of female and male hybrid mouse ESCs into embryoid bodies

(EBs) and in two differentiated hybrid cell lines with stable and completed XCI,
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embryonic kidney-derived Patski fibroblasts and EB-derived neural precursor cells

(NPCs). Integration of datasets that measure large-scale chromosome structure to-

gether with gene expression and chromatin accessibility in thousands of single cells was

performed to evaluate concurrent changes during ESC differentiation.

Results
The 3D structure of the Xi detected by sci-Hi-C changes through the cell cycle

We initially focused our analysis on the sci-Hi-C data from Patski fibroblasts that con-

tain a stable Xi from C57BL/6J (B6) and an active X chromosome (Xa) from Mus

Fig. 1 Schematic of the mouse cell lines used to generate sci-Hi-C, sci-RNA-seq, and sci-ATAC-seq. A B6 x
spret cross was used to generate Patski fibroblasts (top box), and 129 x cast crosses were used to generate
mouse ESCs F123 (male), F121-6 (female), and ES_Tsix-stop (female) (lower box). Cells were collected during
ESC differentiation to embryoid bodies at d0, d3, d7, and d11, followed by collection of neural precursor
cells (NPCs). The XCI status is indicated in dark red. The B6 chrX is always the Xi in Patski cells. The male
F123 line has a single Xa from 129. The cast or 129 chrX can be inactivated at random in differentiated
F121-6, but due to a strong Xce allele, the 129 chrX is more often the Xi. In the cloned F121-6 NPC line, the
129 chrX is always the Xi. In ES_Tsix-stop cells in which XCI has occurred, the 129 chrX is always the Xi.
Images of each culture are shown at right. Single cells were processed for sci-Hi-C, sci-RNA-seq, and sci-
ATAC-seq as described in the text
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spretus (spret), which facilitates allelic studies (Fig. 1). Sci-Hi-C data were obtained

from a total of 4493 cells with a median coverage of 5167 informative contacts (intra-

chromosomal contacts >1 kb and interchromosomal contacts) per cell, resulting in

about 26M allelic contacts throughout the genome and 1.3M allelic contacts resolved

on the Xi and the Xa (Additional file 1: Table S1). Previous bulk Hi-C studies in this

cell line have demonstrated that the Xi exhibits a unique bipartite structure with two

superdomains, whereas the Xa has A/B compartment and TAD structures similar to

those of autosomes [15, 16]. Pseudobulk allelic contact maps for the X chromosome

(chrX) and chromosome 1 (chr1) homologs using contacts aggregated from the 4493

Patski cells (Fig. 2A, E) or from subsets of cells (Additional file 1: Fig. S1A, B) are virtu-

ally identical to contact maps obtained from bulk data.

The Xi shows a very distinctive contact decay profile (CDP) compared to the Xa or

to the autosomes represented by the exemplar chr1 (Fig. 2B, F and Additional file 1:

Fig. S2A, B). Heatmaps of allelic CDPs binned within exponentially-increasing contact

distances ranges were plotted for each of 1,161 Patski cells with sufficient allelic cover-

age (Additional file 1: Fig. S2A, B and see Methods). As expected, a unique enrichment

in longrange (6.5 Mb – 87 Mb) contacts was observed on the Xi compared to the Xa

or to the two homologs of chr1 (Fig. 2B, F). This trend was accompanied by a reduction

in mid-range contacts (85 kb – 1.1 Mb), consistent with much weaker TADs on the Xi

[14]. These patterns were remarkably consistent across individual cells (Fig. 2B, F), sug-

gesting a stable maintenance of the Xi structure. Plots of average CDPs versus contact

distance clearly differentiate the Xi from the Xa, the latter resembling chr1 homologs,

consistent with classic contact profiles reported for autosomes [32] (Fig. 2C, G). UMAP

projections of CDPs based on sci-Hi-C data clearly show a separation between the Xi

from the Xa, except in a few cells in which there is an apparent lack of the characteris-

tic Xi-specific structure, whereas, in contrast, projections CDPs for chr1 homologs

show no separation (Fig. 2D, H).

Next, we defined parameters to call single cells as having an X chromosome with a

bipartite condensed structure (hereafter, “bipartite X”), by plotting the distributions of

Spearman correlations between the contact decay profiles (CDPs) of each allele for

chrX and chr1 for each of the selected 1161 cells. This resulted in a clear separation be-

tween chrX and chr1: the chrX-allelic correlation in each cell is variable and low,

resulting in a wide distribution that peaks close to 0.5, while the chr1-allelic correlation

is consistent among cells, resulting in a sharp distribution that peaks close to 1 (Add-

itional file 1: Fig. S2B). We then defined a threshold representing a 10% false-positive

rate (FPR) of calling a cell containing a bipartite X based on the distribution for chr1-

allelic CDPs (Additional file 1: Fig. S2B, C). Using these parameters, a majority of Patski

cells (79% or 917/1161) were deemed to contain a bipartite X, supporting that CDP

correlation analysis can be reliably used to ascertain the 3D structure status of the two

X chromosomes in single cells. However, the correlation does not provide information

about which allele has changed. We can assume that it is the B6 allele with the bipartite

X, since XCI is skewed towards that allele in Patski cells. To confirm this, we assessed

the difference between the total long-range (6.5–87 Mb) and the total mid-range (85

kb–1.1 Mb) contact counts, or the long-range to mid-range difference (LMD; see the

“Methods” section), for each homolog of each cell. If two chrX homologs display a sig-

nificantly large difference between their LMDs, then the homolog with the larger LMD
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Fig. 2 (See legend on next page.)
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likely possesses the Xi 3D structure. Again, we defined a threshold representing a 10%

FPR for calling a cell containing a bipartite chromosome based on the distribution of

LMD differences for chr1-allelic CDPs (Fig. 2I, J). Using these parameters, a majority of

Patski cells (81% or 943/1161 cells) were deemed to contain a B6 bipartite X, which is a

similar proportion to that from the CDP correlation analysis. Indeed, 89% of Patski cells

with a bipartite X as determined by Spearman correlation of the CDPs of the homologs

were also shown to have a bipartite X using the LMD approach. Thus, the results of

the LMD analysis correspond closely to those obtained using CDP correlation analysis,

with the additional benefit that they can be reliably used to ascertain which chrX

homolog has assumed the Xi 3D structure.

The proportion of Patski cells lacking a Xi bipartite call, as ascertained by LMD ana-

lysis, is dependent on setting the FPR threshold, but does not appear to represent cells

that have lost the Xi since at least 100 B6-specific X-linked contacts were detected in

these cells (see the “Methods” section). Furthermore, we have previously shown that

more than 96% of Patski cells retain one Xa and one Xi, using both DNA FISH with an

X-paint probe and RNA FISH with an Xist probe [15, 16]. Thus, cells that lack a CDP

difference characteristic of the Xi (Fig. 2D, I, J; Additional file 1: Fig. S2B, C) likely rep-

resent a specific stage of the cell cycle when chromatin is reorganized [33, 48–50], or

may represent cells where data is too sparse to make a confident call as to the state of

the chrX homologs based on allelic CDPs.

(See figure on previous page.)
Fig. 2 The Xi bipartite structure is captured by allelic sci-Hi-C data and changes with the cell cycle. A
Aggregate (pseudobulk) allelic contact maps for the Xi and Xa using all segregated contact read pairs from
sci-Hi-C on 4493 individual Patski cells (XCI is completely skewed to the BL6 allele in Patski cells). Color scale
in log10 (contact counts + 1). See also Additional file 1: Fig. S1. B Heatmaps of allelic contact decay profiles
(CDPs) for the Xi (red bar) and Xa (blue bar) for 1161 Patski cells with at least 100 contacts per allele (along
both chrX and chr1). The heatmap color scale reflects z-scaled counts within contact distance ranges
shown along the x-axis. Contact counts were binned within exponentially increasing contact distances
ranges (2^x where x was incremented by 0.125). These bins were then aggregated further to reduce noise
by combining the counts within 10 non-overlapping bins at a time. Yellow rectangles highlight the bins
used for long-range to medium-range difference (LMD) calculation (see I and J and the “Methods” section).
C Plots of CDPs for the Xi (red) and Xi (blue) across the 1161 cells in B. The average CDP is plotted over the
plots of CDPs for each individual cell. The Spearman correlation between the average allelic CDPs is shown
at the bottom of each plot. Contact counts were binned as described in B, and the bins used for long-
range to medium-range difference (LMD) calculation are highlighted in green (see I and J and the
“Methods” section). D UMAP of CDPs for the Xi (red) and Xa (blue) for each of the 1161 cells in B. Contact
counts were binned as described in B. The CDPs for each parental allele form two distinct clusters. E–H As
in A–D, but for the B6 and spret (Sp) parental alleles of exemplar autosome, chr1. I Distributions of the
difference between the long-range to mid-range differences (LMD) between the allelic CDPs for each of
1161 cells for chrX (green; as described in B) and chr1 (black; as described in F). The dashed line represents
a threshold chosen below which cells were called as having an Xi bipartite structure based on the allelic
CDP LMD. This threshold represents a 10% false-positive rate (FPR) based on the distribution for chr1 allelic
CDP LMD (see J). J Plot of true-positive rate (TPR; proportion of cells called as having an Xi bipartite
structure based on the LMD differences between allelic CDPs as described in B and I) versus false-positive
rate (FPR; proportion of cells called “inactive” based on the LMD differences between the allelic CDPs for
chr1 as described in F and I) at all thresholds of absolute LMD. The area under the curve (AUC) is 0.92. The
dashed line represents the 10% FPR threshold chosen below which cells were called inactive based on the
chrX allelic CDP LMD. K Aggregate allelic contact maps for the Xi and Xa using contact pairs from 64
mitotic cells (top row) and 2615 interphase cells (bottom row). Mitotic and interphase cells were grouped
using the k-means clustering of the autosomal CDPs (Additional file 1: Fig. S2D). L Plots of allelic CDPs for
the Xi (red) and Xa (blue) for cells in each of the four clusters obtained from the k-means clustering of the
autosomal CDPs (Additional file 1: Fig. S2D). The average CDP is plotted over plots of the CDPs for each
individual cell. The Spearman correlations between the average allelic CDPs are given at the bottom of the
plot, along with cell counts used in the analysis. M–N As in K–L, but for B6 and spret alleles of chr1
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To address cell cycle changes in Xi structure, cells were ordered through the cell

cycle using biallelic CDP distributions on autosomes [33] (see the “Methods” section).

Cells were grouped into four clusters using k-means clustering using the Spearman cor-

relation distance between the cells’ CDPs (Additional file 1: Fig. S2D, E). Aggregated al-

lelic contact maps for the Xi and Xa and for chr1 were markedly different when

comparing 64 mitotic cells in cluster 1 (1.4% of 4493 cells) to 2615 interphase cells in

cluster 4, with the mitotic cells displaying the well-documented strong diagonal compo-

nent and no compartmentalization due to condensin-mediated polymer self-looping

(Fig. 2K, M) [33, 48–50]. We then examined cell-cycle phased CDPs for the selected

1161 Patski cells. Plots of allelic CDPs for the Xi and Xa for each cell in each of the

four clusters were markedly similar in mitotic cells but diverged at other stages (Fig. 2L).

At mitosis, the profiles for chrX and chr1 were similar for all alleles, consistent with

the uniform condensed structure of mitotic chromosomes (Fig. 2L, N). As visualized in

a video assembled by pooling contact maps for the Xi and Xa and for chr1 grouped

based on their cell cycle stage, the bipartite X disappears during mitosis and re-

emerges during interphase, as does the A/B compartment structure of the Xa and auto-

somes (Additional file 2). We found that the presence of mitotic cells could only partly

explain the 218 out of 1161 Patski cells in which a bipartite X was not detected (at a

10% FPR threshold) (Fig. 2I, J). Of these 218 cells, 16 (7.2%) cells are in mitosis (cluster

1), which represents a 5.2-fold enrichment over the overall proportion of cells in mi-

tosis (64/4493 = 1.4%). Therefore, the inability to confidently assign an Xi bipartite

structure in a subset of Patski cells is in part due to their being in mitosis, but other

factors including variance in the strength of the bipartite structure among single cells

and variance in the ability of the sci-Hi-C assay to detect it probably play a major role.

We conclude that in Patski cells the bipartite X is easily detected in a majority of nu-

clei by analysis of the CDPs. A structural change takes place at mitosis, due to tight

condensation of chromosomes by the condensin machinery. Once removed at the re-

turn of interphase, the bipartite organization of the Xi resumes, suggesting a “bookmark

memory” of that structure, potentially represented by the clustered CTCF binding at

Dxz4, which specifically separates the Xi superdomains [15].

Cells with an Xi bipartite structure progressively increase during ESC differentiation

As shown in the previous section, LMD analysis provides a reliable method to detect

the Xi bipartite structure in Patski cells, which represent a differentiated state. To fol-

low the dynamics of the establishment of the Xi bipartite structure during differenti-

ation, sci-Hi-C was done on embryonic stem cells derived from 129 x cast F1 embryos

(Fig. 1). As in Patski cells, alleles in F1 hybrid ESCs can be distinguished based on sin-

gle nucleotide polymorphisms (SNPs). We examined two female ESC lines, ES_Tsix-

stop (Tsix-stop, thereafter) and F121, collected at d0, d3, d7, and d11 of EB differenti-

ation, and a control male ESC line, F123, collected at d0, as well as NPCs differentiated

in vitro from all three cell lines (Fig. 1). In addition, sci-Hi-C was done on cells derived

from an independent EB differentiation time course of F123, F121, and Tsix-stop cells,

collected at d0 and d7, and on d20 fibroblasts enriched from EB outgrowth (time

course experiment 2; see the “Methods” section). These time points were selected based

on previous bulk studies of mouse ESC EB differentiation at stages corresponding to
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Fig. 3 X inactivation-associated structural changes in Tsix-stop cells during differentiation. A Heatmaps of X-
chromosome (left) and chromosome 1 (right) allelic contact decay profiles (CDPs) for the 129 (red bar) and
cast (blue bar) alleles for 1390 Tsix-stop cells (rows) with at least 50 contacts per allele (along both chrX and
chr1). Cells are sorted by time point (d0, d3, d7, d11, and NPCs, separated by black horizontal lines and with
cell counts shown by the n number) and then by the presence of a bipartite Xi, if detectable. (Note that
XCI is skewed towards the 129 allele in Tsix-stop cells.) The heatmap color scale reflects z-scaled counts
within contact distance ranges shown along the x-axis. Contact counts were binned within exponentially
increasing contact distances ranges (2^x where x was incremented by 0.125). These bins were then
aggregated further to reduce noise by combining the counts within 10 non-overlapping bins at a time. B
Line plots of the CDPs described in A for chrX parental alleles (129 in red, cast in blue) in Tsix-stop at the
indicated time points during differentiation from ESCs (d0) to embryoid bodies (d11), as well as neural
precursor cells (NPCs) for cells classified as not having the Xi bipartite structure (top row) and those that do
exhibit CDPs indicative of an Xi on their 129 allele (bottom row). The average allelic CDP is plotted over the
plots of CDPs for each individual cell. Spearman correlation values between the two mean allelic CDPs (i)
and median of the Spearman correlation values between allelic CDPs for each cell (ii) are given in the top
left corner of each plot. C Distributions of the difference between the long-range to mid-range differences
(LMDs) of each allele (as described in Fig. 2 I and the “Methods” section) for each cell as described in A for
chrX (green) and chr1 (black). The dashed lines represent a threshold chosen below which cells were called
as having an Xi bipartite structure based on the chrX allelic CDP LMD differences. This threshold represents
a 10% false-positive rate (FPR) based on the distribution for chr1 allelic CDP LMD differences. See Additional
file 1: Table S2
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pre-XCI (d0), early-XCI (d3), mid-XCI (d7), late-XCI (d11), and post-XCI (d20 out-

growth fibroblasts and NPCs) [23, 51–55]. The number of cells, contacts per cell, and

contacts per allele (129 and cast) are listed in Additional file 1: Table S1.

We first performed cell cycle analysis in NPCs differentiated from Tsix-stop and

F121 in which the Xi is from the 129 strain due to a Tsix mutation or single-cell clon-

ing (Fig. 1 and see the “Methods” section). Tsix-stop and F121 NPCs were clustered

into four groups based on k-means clustering of the autosomal non-allelic CDPs. After

verifying that the four groups captured cells in different cell cycle states by plotting the

proportion of short-range against the proportion of mitotic band contacts and coloring

by group as described for Patski cells (Additional file 1: Fig. S2 D, E), we generated

pseudobulk contact maps and CDP plots for the cells in each group (Additional file 1:

Fig. S2F, G). These plots show that the Xi-specific bipartite structure and distinctive

CDP is lost in mitotic cells and re-emerges during interphase in NPCs. In ESCs, the

typical compartmental structure is also lost during mitosis only to re-emerge during

interphase, but neither allele takes on the Xi bipartite structure since XCI has yet to

occur in these cells (Additional file 1: Fig. S2H, I).

Next, we examined the establishment of the bipartite X during EB (d0–d11) and

NPC differentiation of Tsix-stop, in which the 129 strain-derived X is always the one to

be silenced during differentiation and thus is easy to track (Fig. 3; Additional file 1: Fig.

S3A, B). Plots of the distribution of mean allelic CDPs show the progressive appearance

of the bipartite structure of the 129 X during differentiation. There is evidence of an in-

crease in long-range contacts in the emerging Xi and a decrease in mid-range contacts,

resulting in an increase in LMD, which can be used to identify which chrX homolog ac-

quires a bipartite structure, as was done in Patski cells (Fig. 2C, I; Fig. 3). In contrast,

allelic CDPs appear similar for autosomal homologs as exemplified by chr1 at each time

point (Additional file 1: Fig. S3A). The progressive appearance of a characteristic Xi

structure as shown by the mean CDP analysis of differentiating ESCs could be due to

two factors: an increase in the proportion of cells with an Xi structure and a progres-

sively stronger Xi structure in individual cells at each time point. To examine these fac-

tors, we applied the LMD analysis to classify cells with a bipartite X at each time point.

At d0, the proportion of cells identified as having a bipartite 129 chrX was 9% (Fig. 3C;

Fig. 4C; Additional file 1: Table S2). This proportion increased to 34%, 63%, 71%, and

83% at d3, d7, d11, and NPCs, respectively, consistent with each stage representing a

mixture of cells with or without the Xi structure. Similar proportions of cells assuming

a bipartite X were obtained using the Spearman correlation coefficient between allelic

CDPs (Additional file 1: Fig. S3B). Of the 17% of Tsix-stop NPCs that could not be

confidently said to have a bipartite X based on the LMD analysis, 18% of them are mi-

totic cells (autosomal CDP cluster 1; Additional file 1: Fig. S2F), which represents a 6.6-

fold enrichment over the overall proportion of mitotic cells (3%), implying that the cell

cycle state of cells partially explains the inability to detect a bipartite Xi in NPCs, as in

Patski cells.

We then analyzed F121 cells, which undergo random XCI albeit with ~3:1 skewing

towards the 129 X due to a stronger X-controlling element on the cast allele [56].

Based on LMD analysis, the percentage of cells with a bipartite X was 12% (6% 129 X)

at d0 and increased to 14% (8% 129 X), 44% (28% 129 X), and 50% (32% 129 X) at d3,

d7, and d11, respectively, consistent with progressive selection of cells with a 129 Xi
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(Fig. 4A, B, D; Additional file 1: Table S2). Note that at d0 the CDPs for both chrX and

chr1 are quite different from those at later time points, with fewer short-range and

more mid-range contacts (Additional file 1: Fig. S3C, D). As in Tsix-stop NPCs, XCI in

cloned F121 NPCs is completely skewed towards the 129 allele, since this is a single-

cell clonal line (Fig. 4C, D). Reassuringly, the proportion of cells assessed to have an

Fig. 4 Progressive establishment of the distinctive Xi architecture during differentiation. A As in Fig. 3B, but
for F121 cells with additional panels showing the allelic CDPs for those cells that do exhibit CDPs indicative
of an Xi bipartite structure on their cast allele (bottom row; XCI is partially skewed towards the 129 allele in
F121 cells at d0–11 and completely skewed to the 129 allele in NPCs). See Additional file 1: Fig. S3C for
F121 heatmaps. B As in Fig. 3C, but for F121 cells. C Plots of the proportion (%) of Tsix-stop cells with a 129
allele (red) and cast (blue) allele with an Xi bipartite structure. D As in C but for F121 cells. E Plots of the
proportion (%) of Tsix-stop cells (light green) and F121 cells (light blue) with an Xi bipartite structure. F
Pseudobulk allelic contact maps combining the cells that were classified as having a chrX homolog
exhibiting an Xi bipartite structure (XCI cells) for EB cells (d3, d7, and d11 cells from both F121 and Tsix-stop
time course experiments combined). Below each contact map is a plot of the contact score (see the
“Methods” section) showing the dip in contacts across the Dxz4 locus (vertical red dashed line). G As in F,
but for Tsix-stop and F121 NPCs classified as having an Xi. 450 cells were sampled from a potential 1077
inactivated NPCs in order to make the contact maps more comparable to those in F
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Xi-specific structure is the same for the Tsix-stop and F121 NPCs (83%) and is also

similar to that for Patski cells (81%). Similar to our findings in Patski cells and in Tsix-

stop, of the 17% of F121 NPCs that did not have a bipartite X based on the LMD ana-

lysis, 24% are in mitosis, representing a 9-fold enrichment over the overall proportion

(3%) of mitotic cells (autosomal CDP cluster 1; Additional file 1: Fig. S2F). Again, cell

cycle differences can only account in part for cells that lack a detectable bipartite Xi,

suggesting that other factors are implicated. Notably, the proportion of F121 cells that

acquire the Xi-specific structure increases more slowly than that of Tsix-stop cells

(Fig. 4E). This is probably because the 129 chrX carrying a Tsix mutation cannot re-

press upregulation of Xist upon differentiation and thus is forced to undergo inactiva-

tion. A similarly slow XCI onset in normal female ESCs compared to the Tsix-stop line

was previously reported based on the proportion of cells acquiring an Xist cloud during

differentiation, with the delay being ascribed to the process of stochastic choice [57].

We further confirmed the appearance of a bipartite X in female cells by assembling a

pseudobulk allelic contact heatmap for the presumptive Xi by aggregating contacts in a

total of 433 F121 and Tsix-stop cells deemed to have a bipartite X call at d3, d7, and

d11. This shows the emergence of the bipartite X, which is not seen for the corre-

sponding Xa heatmap (Fig. 4F). The bipartite X is even more distinctive in the heatmap

aggregated from the Xi contacts for 450 F121 and Tsix-stop NPCs that have a bipartite

X call (sampled from a possible 1077 inactivated cells), and is associated with a pro-

nounced dip in the contact score across the Dxz4 locus (Fig. 4G). Analysis of a sci-Hi-

C dataset for an independent EB differentiation time course with comparatively fewer

differentiating cells further confirmed the progressive appearance of cells with a bipart-

ite X during differentiation and the efficacy of the LMD analysis (Additional file 1: Fig.

S4A–D; Additional file 1: Table S2). We found that 59% of d20 Tsix-stop fibroblasts

(56% 129 Xi; 3% cast Xi) and 74% of F121 d20 fibroblasts (49% 129 Xi; 25% cast Xi)

had a bipartite X call, consistent with their completely or partially skewed XCI patterns

respectively. In addition, we examined ES (d0) cells and NPCs from the male F123 cell

line. Allelic CDPs for chr1 homologs and for the single active X chromosome appear

similar to those in F121 (Additional file 1: Fig. S4E).

In conclusion, the proportion of nuclei exhibiting a high frequency of extremely

long-range interactions characteristic of the Xi-specific 3D structure increases progres-

sively during the course of differentiation of female cells. Our single-cell data show that

at each differentiation time point there is evidence of a mixture of cells with the bipart-

ite X and cells without it, something that would not be evident from bulk sci-Hi-C data.

Whether cells in different embryonic lineages acquire an Xi structure at different rates

remains to be determined.

Allelic trajectory analysis reveals discrete changes to 3D genome organization

We next subjected genome-scale allelic CDP data (i.e., allelic CDPs consisting of 143

logarithmic bins for each chromosome concatenated together; see the “Methods” sec-

tion) to semi-supervised trajectory analysis using the implementation of the DDRtree

algorithm [58] in Monocle2 [59] based on differential CDP bins across time points.

This yielded a bifurcated developmental trajectory dependent on the time points of dif-

ferentiation, even though some cells from different time points were dispersed across
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all three branches, indicative of variability in nuclear structure (Fig. 5A). Notwithstand-

ing this variability, most d0 cells (80%) fall along one of the three branches (called early

branch), representing the root of the developmental trajectory, while most d3 cells

(86%) and about half of d7 cells (45%) are found along a second (intermediate) branch

seemingly representing a transitional stage of differentiation. The third (differentiated)

branch comprises a majority of NPCs (77%), d11 cells (74%), and about half of d7 cells

(46%) and thus appears to capture cells exhibiting a nuclear conformation representa-

tive of a more differentiated stage of development (Fig. 5A). Similar trajectories were

obtained based on autosomal and X-chromosomal allelic CDPs, supporting profound

3D structural changes throughout the genome during differentiation (Fig. 5B, C; Add-

itional file 1: Fig. S5C). Projections based on sci-Hi-C allelic CDPs after performing

topic modeling, further show that cells co-localize into groups whose nuclear confor-

mations are particular to each time point (see below; Additional file 1: Fig. S8C, F). Im-

portantly, a similar sci-Hi-C trajectory with three branches was obtained in F121 cells

when NPCs were omitted, indicating that the three conformational states captured by

each branch represent structural changes that occur during differentiation and are not

driven by a specifically differentiated cell type (Additional file 1: Fig. S5A–C). Further-

more, the branch structure does not appear to be driven by specific embryonic germ

layers as shown by sci-RNA-seq and sci-ATAC-seq (see below).

Cells at the terminal end of the differentiated branch are later in pseudotime than

those at the terminal end of the intermediate branch, which provides further evidence

that the intermediate branch represents a nuclear conformation that arises during the

course of differentiation (Fig. 5D). Furthermore, a majority of cells (56–65%) in the tra-

jectories cluster at the terminal ends of each branch as seen in cumulative distribution

functions of the proportion of cells per branch with pseudotime normalized between 0

and 1 along each of them (Fig. 5E, F). Inflection points beyond which over 50% of the

cells are seen to accumulate serve as the thresholds beyond which cells are considered

to be distal cells along each branch. This suggests the existence of three distinct types

of nuclear structure as defined by CDPs. Coloring the genome-wide trajectories to re-

flect each cell’s total contact count shows that the branch structure is not driven by

coverage differences (Additional file 1: Fig. S5D). Cumulative distributions of the total

contact counts of cells along each branch show this quantitatively (Additional file 1:

Fig. S5E).

To identify structural features specifically associated with each of the three relatively

discrete 3D nuclear conformations, the average CDPs for chr1 and chrX were derived

from the cells at the end of each branch, regardless of their day of differentiation

(Fig. 5E–G). Comparisons between these average CDPs show a distinct distribution of

contacts for both chr1 and chrX in cells within each of the three branches (Fig. 5H;

Additional file 1: Fig. S5F). Cells in the early branch have significantly fewer very-short-

range contacts (<10 kb) corresponding to chromatin loops and more medium-range

contacts (30 kb–1 Mb) corresponding to TAD/sub-TAD structures compared to those

in either the intermediate or the differentiated branches. Cells in the intermediate and

differentiated branches acquire very long-range contacts in the 30–170 Mb range, cor-

responding to the formation of A/B compartments. A comparison between the CDPs

for cells in the intermediate and differentiated branches shows little change in short-

range and medium-range contacts but a strong increase in very long-range contacts
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associated with differentiation. While chr1 homologs show no differences between al-

leles, there are strong differences between chrX alleles, with the cast Xa resembling

chr1, and the 129 Xi showing unique structural changes due to the emergence of its bi-

partite structure (Fig. 5G, H). Both the decrease in medium-range contacts and the in-

crease in very long-range contacts are exaggerated on the Xi in differentiated cells

versus earlier stages, which likely reflects the loss of A/B compartments and the overall

condensation of the Xi.

In conclusion, trajectory analyses of sci-Hi-C CDP data reveal three distinct nuclear

structure states reflecting discrete and profound changes not only in the structure of

the X chromosomes but also to that of autosomes. The order of events that take place

during differentiation appears to be that short-range contacts are gained and medium-

range contacts lost before very long-range contacts fully develop. The Xi appears to ac-

quire its bipartite structure at the same time that autosomes show a sharp increase in

very long-range contacts. Thus, our single-cell Hi-C analysis shows for the first time

that nuclei abruptly change structure during differentiation, which contrasts with the

smoother linear developmental trajectories typically observed based on expression or

accessibility data, as shown in the next section.

Single-cell expression and accessibility trajectories recapitulate ESC differentiation and

XCI

Changes in gene expression and chromatin accessibility during differentiation of female

F121 and male F123 cells were measured by sci-RNA-seq and sci-ATAC-seq applied to

(See figure on previous page.)
Fig. 5 Trajectory analyses based on allelic CDPs reveal distinct conformational states during differentiation.
A Semi-supervised genome-wide trajectory analysis of F121 cells based on allelic CDPs (see Fig. 2 I and the
“Methods” section) from sci-Hi-C data using Monocle2 DDRTree. Allelic CDPs for each chromosome were
concatenated together for each of 2056 F121 cells with at least 100 contacts per chr1 and chrX allele. 2040
significantly differential bins from the genome-scale concatenated allelic CDPs across time points with q-
value ≤ 10−11 were used to construct the trajectory. Each data point represents a cell colored by time
point. Arrows indicate the direction of development in pseudotime. Branches are labeled according to
developmental state: branch 1 is the root embryonic stem cell (early) branch; branch 2 captures an
intermediate state (intermediate branch); and branch 3 captures the genome architecture of differentiated
cells including NPCs (differentiated branch). Inset table gives cell counts per time point per trajectory
branch as well as the time point color used for data points in the plot. See also Additional file Fig. S5A–E. B
As in A, but based on 1924 significantly differential bins (q-value ≤ 10−11) for autosomal allelic CDPs. C As in
A, but based on 178 significantly differential bins (q-value ≤ 10−5) for chrX CDPs. Three early sub-branches
were considered to be a single early branch (Additional file 1: Fig. S5C). D As in A, but with cells colored by
pseudotime with respect to the root ESC branch. E As in A, but highlighting the most distal cells on each
branch of the trajectory. The inset table gives the proportion of cells classified as distal and non-distal.
Pseudotimes for each branch were renormalized to fall between 0 and 1 and the following thresholds were
used to classify cells as distal for the early, intermediate, and differentiated branches respectively: 0.91, 0.83,
and 0.73 (see F). F Cumulative distributions (CDFs) of the proportion of cells along each branch of the
trajectory in A. Vertical dashed lines show the inflection points in the plots chosen for determining the
threshold for calling distal cells in E. G Allelic CDPs for chr1 (left column) and chrX (right column) (129 in
red, cast in blue) for cells at the distal ends of the three branches (rows) from the trajectory described in E.
For binning and scaling details of the plots as described in Fig. 3A. H Plots of the log2 ratios between allelic
CDPs for cells at the distal ends of each pair of branches (rows) in the trajectory described in E for every
logarithmic bin (2^x where x was incremented by 0.125) for the 129 (red) and cast (blue) alleles of chr1 and
chrX. Top row: intermediate vs. early branch. Middle row: differentiated vs early branch. Bottom row:
differentiated vs. intermediate branch. The dashed line reflects no difference between the two groups of
cells and yellow highlighting reflects bins that show a significant difference (adjusted p-value <10−6)
between the two groups of cells (Additional file 1: Fig. S5F)
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cells collected on d0, d3, d7, and d11, and after differentiation into NPCs (Fig. 1; Add-

itional file 1: Tables S3; S4). With sci-RNA-seq, we obtained 9021 cells with ≥200 UMIs

and we found that median autosomal and X-linked gene expression was highest at d0

and in NPCs (Additional file 1: Fig. S6A–C). With sci-ATAC-seq, we obtained 2727

cells with ≥ 500 UMIs (Additional file 1: Fig. S6D-F).

A non-allelic developmental trajectory was obtained using the same DDRtree algo-

rithm used in the previous section, but in this case based on differentially expressed

genes in sci-RNA-seq data across the time points in both F121 and F123 cells (Fig. 6A).

This semi-supervised trajectory has a single branch point representing the divergence

of NPCs from the default EB differentiation pathway. The ESC branch mainly com-

prises d0 (79%) and some d3 cells (19%), while the EB branch mainly comprises d7

(43%) and d11 cells (38%), and no NPCs. A separate NPC-specific branch includes a

majority of NPCs (82%) and some cells from earlier stages, especially d11 cells (9%).

Developmental pseudotime can be assigned to each cell in the trajectory based on that

cell’s distance from the root node—in this case, ESCs. Individual genes implicated in

developmental processes demonstrate changes in expression as a function of pseudo-

time (Fig. 6B). For example, genes associated with pluripotency of ESCs (e.g., Klf4)

show a decrease in expression during differentiation. Otx2, a homeobox gene important

for early embryonic patterning of the brain and heart, is transiently expressed, while

Sema5a, a gene encoding a bifunctional axon guidance cue for mammalian midbrain

neurons, is gradually upregulated during differentiation, and Map2, an NPC marker

gene, is specifically expressed in NPCs. As expected, Xist expression progressively in-

creases only in female cells during differentiation, consistent with the onset and estab-

lishment of XCI.

Pseudotime trajectories based on non-allelic autosomal gene expression patterns re-

vealed sex differences in the developmental kinetics of female F121 and male F123

ESCs (Fig. 6C). Compared to male cells, female cells at d3, and to a lesser extent at d7

and d11, are significantly enriched along the ESC branch, with 77% of female d3 cells

still in that branch, as compared to 26% of male d3 cells. On the other hand, female

cells at d3 are depleted along the EB branch where they represent only 20% of cells,

while d3 male cells represent 55% of cells in that branch. Two genes encoding pluripo-

tency factors (Klf4 and Pou5f1) are exemplary of this delay in that they are expressed

later in pseudotime in female versus male cells (Fig. 6D). Based on X-linked gene ex-

pression, an even more pronounced delay in female cell development is evident, espe-

cially between d0 and d3, suggesting that the onset of XCI is a major contributor to the

strong developmental delay (Fig. 6E). These sex differences are also observed in trajec-

tories based on X-linked and autosomal chromatin accessibility (Additional file 1: Fig.

S6G, H). Our results using DDRTree trajectories based on PCA projections were fur-

ther confirmed using UMAP to project jointly the genome-wide non-allelic F121 and

F123 sci-RNA-seq count matrix into a 2D space and coloring the cells by time point

and sex, which demonstrates a clear separation between female and male cells espe-

cially at d0 and d3 (Fig. 6F). Furthermore, d0 and d3 female cells exhibit a higher X-

chromosomal to autosomal gene expression ratio (X:A ratio) than male cells, support-

ing the role of increased X expression dosage in the control of differentiation (Fig. 6G).

Excluding NPCs from genome-wide non-allelic expression and accessibility analysis re-

sulted in trajectories without branch points representing a smooth passage of
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development along the default pathway from ESCs to EBs (Fig. 6H, I). These trajector-

ies also demonstrate the developmental delay experienced by female cells compared to

male cells (Fig. 6H, I). To confirm our results, we used an entirely unsupervised ap-

proach by conducting topic modeling on the non-allelic F121 and F123 sci-RNA-seq

and sci-ATAC-seq count matrices in order to determine common patterns of expres-

sion and accessibility. Projections of the resulting topic matrices into 2D space show

that the topics successfully recapitulate the developmental time course, both by PCA

and UMAP (Additional file 1: Fig. S6I–L). Segregating the cells by sex confirms that

early in EB differentiation female cells—d3 cells in particular—are delayed in their de-

velopment relative to male cells (Additional file 1: Fig. S6M–T).

Next, we performed topic modeling on non-allelic sci-RNA-seq and sci-ATAC-seq

data from F121 cells in order to investigate the germ layer origin of cells on the

branches of the trajectory obtained by sci-Hi-C (Fig. 5A). Heatmaps of the single-cell

topic matrices show that cells from different time points are associated with particular

topics, which confirms the distinct nature of the ESCs (d0), EBs (d3, d7, d11), and

NPCs (Fig. 7A, D). PCA projections and UMAP of the count matrices colored by time

point show that the EB developmental trajectory is faithfully captured in the data

(Fig. 7B, F). Using select topics that capture EB differentiation state and NPCs based on

gene expression and chromatin accessibility (Fig. 7C, G), we conducted gene ontology

(GO) analysis of topic-associated genes (Fig. 7D, H). We found that the highest ranked

significant d7–d11 EB GO terms by observed/expected fold change were associated

with mesodermal rather than ectodermal development, while NPC topics were associ-

ated with neuronal terms. We did observe that one sci-ATAC-seq topic (topic19) asso-

ciated with GO terms related to early neuronal development marked a small subset of

d11 cells (Fig. 7H). This is consistent with some d11 cells (<20%) being found along the

NPC branch of both the gene expression and accessibility trajectories (Fig. 6A, C, E;

(See figure on previous page.)
Fig. 6 Female cells show delayed onset of differentiation relative to male cells. A Semi-supervised genome-
wide trajectory analysis of non-allelic F121 and F123 sci-RNA-seq data with Monocle2 DDRTree using 14,037
differentially expressed genes across time points with q-value ≤ 0.01 and showing expression in at least 10
cells. Arrows indicate the direction of development in pseudotime. Branch 1 is the root ESC branch; branch
2 represents the default embryoid body (EB) pathway; and branch 3 captures NPCs, which derive from d11
cells. Inset table gives cell counts per time point per trajectory branch as well as the time point color used
for data points in the plot. B Expression (log10 UMIs) of select genes with respect to pseudotime based on
the trajectory in A. Klf4 is a pluripotency factor; Otx2 is transiently expressed during EB differentiation;
Sema5a is upregulated during EB differentiation; Map2 is a NPC-specific marker; Xist is upregulated in
female cells to initiate XCI. Data points are cells colored by time point (shown above) on the left, and by
sex (female pink, male, blue) on the right. C As in A, but based on 13,532 autosomal genes and faceted by
cell sex (F121 on the left, F123 on the right). Bar graphs show the proportion of F121 to F123 cells per
branch of the trajectory per time point. Compared to male cells, female d3, d7, and d11 cells are enriched
along the ESC branch 1, while d3 cells are under-enriched along the EB and NPC branches (branches 2 and
3) indicating a delayed onset of differentiation. Percentages of less than 10% omitted. D Heatmap of genes
in aligned kinetic curves where columns correspond to the log-transformed UMIs at each point in the
aligned trajectory. These values were further transformed into per-gene Z scores. Each row shows a
pluripotency factor gene. E As in C, but for 361 X-linked genes. F UMAP of the non-allelic F121 and F123
sci-RNA-seq count matrix colored by time point (left) and sex (right). G As in F, but colored by the ratio of
X-chromosomal to autosomal gene expression (X:A ratio) based on genes that were expressed in at least 10
cells. H As in A, but excluding NPCs and faceted by sex (F121 on the left, F123 on the right). On the right
are plots of cumulative distributions of cells’ pseudotimes (rescaled between 0 and 1) along the trajectory
arc for female F121 and male F123 cells (see Additional file Fig. S6I, M, Q, K, O, S). I As in H, but based on
non-allelic chromatin accessibility (see Additional file 1: Fig. S6G. H, J, N, R, L, P, T)
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Additional file 1: Fig. S6G, H). However, since 74% of d11 cells are found along the dif-

ferentiated branch of the CDP trajectory together with 77% of NPCs, the small number

of d11 cells with some neuronal characteristics is unlikely to be driving the formation

Fig. 7 F121 d7 and d11 cells are mostly mesodermal in nature and distinct from NPCs. A Heatmap of the
topic matrix generated from non-allelic F121 sci-RNA-seq data. The color scale reflects the probability that a
cell is associated with a particular topic. Topics (rows) and cells (columns) are hierarchically clustered to
show relatedness. The color bar along the top of the heatmap designates cell time points with additional
annotation to the heatmap to highlight topics associated with particular time points. B PCA projections
(left) and UMAP (right) using the first two components of the count topic matrix used as input to the topic
modeling described in A where each data point is a cell colored by time point. C UMAP as in B, but
colored by the probability that cells are associated with selected d7, d11, and NPC topics used for gene
ontology analysis in D. D Results of gene ontology (GO) analysis based on genes associated with the
selected topics. The top 5 significant terms per topic with the highest fold change relative to all regions are
plotted with circle size giving an indication of the fold change and color showing significance.
Mesodermal-associated terms are highlighted in light blue with neuronal terms highlighted in gray. E–H As
in A–D, but based on non-allelic F121 sci-ATAC-seq. GO analysis based on genes proximal to regions
associated with the selected topics
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of the differentiated branch of the allelic CDP trajectory (Fig. 5A–C). Overall, the topic

modeling and associated GO analysis confirm that EBs—which were cultured in sus-

pension with a fetal bovine serum-based medium—are largely mesodermal in nature

whereas NPCs are ectodermal, as previously described [60, 61].

To assess the dynamics of gene expression and chromatin accessibility changes dur-

ing female F121 and male F123 differentiation, we generated allelic count matrices. We

obtained 2696 cells with at least 160 UMIs per allele by sci-RNA-seq (Additional file 1:

Fig. S7A, B; Additional file 1: Table S3) and 1900 cells with at least 500 UMIs by sci-

ATAC-seq (Additional file 1: Fig. S7E, F and Additional file 1: Table S4). Distributions

of allelic expression and accessibility were comparable for autosomes at all time points

for both F121 and F123 cells, while X-linked distributions showed differences among

developmental stages in female F121 cells. As expected, we also observed complete si-

lencing of the 129 chrX in F121 NPSs, and the absence of the cast allele in male F123

cells (Additional file 1: Fig. S7C, D, G, H). Heatmaps of allelic gene expression for the

25% most variability expressed genes on chr1 and chrX confirm these trends (Add-

itional file 1: Fig. S7I, J). Trajectories based on genome-wide allelic expression and ac-

cessibility data (allelic counts concatenated together) in F121 cells are similar to those

obtained for non-allelic data (Fig. 8A, B).

Comparisons between the distributions of differential allelic expression and chroma-

tin accessibility obtained by sci-RNA-seq and sci-ATAC-seq for chr1 and chrX (log2

ratio of total expression between parental alleles) show a switch from biallelic to mono-

allelic expression during differentiation for chrX, whereas chr1 shows biallelic expres-

sion (Fig. 8C, D). While autosomal distributions—such as those for chr1—hug the zero

value, consistent with biallelic expression, the distributions based on chrX allelic ex-

pression and accessibility spread away from zero during the course of differentiation,

indicating an increasing proportion of cells with mono-allelic X expression and accessi-

bility due to the onset of XCI. Using a 10% FPR based on the chr1 distributions, one

can estimate the proportion of cells with a silenced chrX as those with expression and

accessibility skewed beyond the threshold in one direction or the other (129 or cast).

As expected, this analysis shows that NPCs have XCI fully skewed towards the 129 al-

lele in F121 cells. Plotting the proportion of cells with a silent chrX as a function of the

time points highlights the onset of XCI, which shows a steep increase between d0 and

d7 when 79–86% of cells have a silent chrX, followed by a slower increase to 96–100%

of cells with a silent chrX in NPCs by sci-RNA-seq and sci-ATAC-seq (Fig. 8E; Add-

itional file 1: Table S2). These proportions are robust to coverage level and cell number,

with similar proportions at each time point observed using different sets of cells based

on different total expression quantiles (Additional file 1: Fig. S7K–N). Importantly,

comparison with the sci-Hi-C data shows a delay in the appearance of the Xi bipartite

structure relative to silencing (Fig. 8E; Additional file 1: Table S2).

In summary, both the single-cell gene expression and chromatin accessibility data re-

capitulate the developmental trajectory of mouse ES cells to EB cells and NPCs. Our re-

sults also reveal that female cells lag behind their male counterparts, particularly early

in the differentiation process, which is consistent with previous results [62, 63] and re-

flects the establishment of XCI. Allelic and non-allelic single-cell RNA-seq and ATAC-

seq data produced similar trajectories that show the progressive onset of X-linked gene

silencing in the course of differentiation. The proportion of cells with a silenced Xi
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increases in parallel to the proportion of cells exhibiting the Xi-specific 3D structure,

but there is a lag in the appearance of the Xi structure. We find that although d11 EB

cells and NPCs are both present on the differentiated branch of the allelic CDP trajec-

tory (Fig. 5A), these cells mostly differ in their germ layer origin. Thus, the three

branch trajectory obtained by sci-Hi-C is driven by the CDPs and reflects nuclear con-

formation differences, but does not reflect the germ layer origin of cells.

Unsupervised multimodal alignment of single-cell expression, accessibility, and contact

data

Despite timing differences in the onset of silencing of X expression and of reduced

chromatin accessibility versus the appearance of the Xi-specific structure, our single-

cell measurements of distinct modalities captured a certain similarity in the dynamics

of ESC differentiation and XCI features. Encouraged by these findings, we investigated

the single-cell relationship between these modalities to better understand changes in

chromatin structure and gene regulation during differentiation. For this analysis, we fo-

cused on F121 cells, which have a complete set of sci-Hi-C, sci-RNA-seq, and sci-

ATAC-seq data. We first aligned cells based on datasets obtained by sci-RNA-seq and

sci-ATAC-seq separately from aliquots of the same batch of cells during differentiation.

Considering that both experimental approaches appear to recapitulate the developmen-

tal trajectory and male-to-female difference (Fig. 6; Additional file 1: Fig. S6), we devel-

oped a method to align cells from each approach to, in effect, obtain an in silico co-

assay. To align the cells, we employed the Maximum Mean Discrepancy Manifold

Alignment (MMD-MA) algorithm [64]. MMD-MA jointly embeds cells measured in

different ways into a shared latent space to achieve an in silico co-assay without any

supervision or prior knowledge as to the cell states (see the “Methods” section).

We successfully aligned cells based on non-allelic expression and chromatin accessi-

bility patterns from F121 cells, as described in a separate publication [65]. Here, we

(See figure on previous page.)
Fig. 8 Allelic expression and accessibility distributions show the onset of XCI-induced gene silencing. A
Semi-supervised genome-wide trajectory analysis based on allelic expression data from sci-RNA-seq in
female F121 cells with Monocle2 DDRTree using 4230 differentially expressed alleles across time points (q-
value ≤ 0.01) and expression in at least 10 cells with a minimum total allelic expression of 160 UMI. Arrows
indicate the direction of development in pseudotime. Branches are labeled according to developmental
state: ESC branch, EB branch, and NPC branch. Tables below trajectories give cell counts and percentages
per time point per trajectory branch as well as the time point color used for data points in the plot. B As in
A, but based on allelic accessibility data from sci-ATAC-seq in female F121 cells for 17,455 of the top 50%
most variable regions across the genome showing coverage in at least 10 cells and significantly differential
across time points (q-value ≤ 0.01). C Distributions of differential expression from sci-RNA-seq between each
homolog (log2 ratio of total 129 and cast expression) in female F121 cells at each time point (columns) for
chr1 (top row) and chrX (bottom row) using genes expressed in at least 5 cells per group and cells with a
total expression of at least 10 UMIs of expression from both alleles per chromosome. A 10% false-positive
rate (FPR) threshold (absolute log2 ratio ≥ 1.2) based on the chr1 distributions was used to classify cells that
had undergone XCI based on the log2 ratios of their total allelic expression. Cells with either their 129 or
cast allele having undergone XCI would have an allelic ratio skewed to the left and right, respectively, as
indicated on the d0 plot. The percentage of cells exhibiting 129 or cast XCI at each time point is shown at
the top left and right, respectively, of each chrX distribution. See Additional file 1: Table S2. D As in C, but
based on allelic chromatin accessibility data from sci-ATAC-seq. E Plots of the proportion (%) of F121 cells
with a silenced chrX (light orange line) as determined by sci-RNA-seq, with a chrX with low accessibility
(yellow line) as determined by sci-ATAC-seq, and with an Xi bipartite structure (blue line) as determined by
sci-Hi-C (see C, D; Fig. 4D, E; Additional file 1: Fig. S7K–N)
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investigated whether we could extend our alignments between sci-RNA-seq and sci-

ATAC-seq data to allelic data, and also to sci-Hi-C data. As we did with the non-allelic

count matrices, we used topic modeling to extract the most prevalent patterns of F121

allelic expression and chromatin accessibility in order to denoise the data and thereby

facilitate alignment (Additional file 1: Fig. S8A, B, D, E; see the “Methods” section).

Similar to what was seen for the non-allelic topic matrices (Additional file 1: Fig. S6G–

J), the allelic topics appear to capture the developmental trajectory of the cells. Further-

more, projections of the results of MMD-MA of F121 cells show that the algorithm

was able to align the cells in a shared space, while retaining the cells’ inherent spatial

separation with respect to time point (Fig. 9A). Even though the alignment was entirely

unsupervised and did not utilize the time point information in performing the align-

ment, cells from similar time points clustered together in the new shared space. We

evaluated alignment performance using the time point labels as orthogonal information

to calculate an AUC score (see the “Methods” section; Additional file 1: Table S5). The

final mean AUC score for all cells in the datasets was 0.907, which is better than that

obtained using non-allelic data (0.875).

In contrast to single-cell gene expression and chromatin accessibility data, non-allelic

sci-Hi-C data proved more challenging to align to either of those datasets. We won-

dered whether using allelic sci-Hi-C data might improve the results since the allelic

CDPs capture the onset and progressive establishment of the distinctive Xi architecture

during differentiation (Figs. 3 and 4). A matrix of allelic sci-Hi-C-based concatenated

CDPs within logarithmically increasing sized bins for both alleles of each chromosome

for each cell was transformed into a topic matrix. Projections of the sci-Hi-C topics ap-

pear to show patterns of interaction particular to each time point (Additional file 1: Fig.

S8C, F). Although a clear developmental trajectory for the alignment of allelic expres-

sion and interaction data was not as obvious as seen for the alignment of allelic expres-

sion and accessibility data, MMD-MA was nonetheless able to align F121 cells with an

AUC of 0.758 (Fig. 9B). The alignment of allelic accessibility and interaction data pro-

duced an AUC of 0.683 using genome-wide data (Fig. 9C).

To examine to what extent the alignments were driven by changes in the structure of

the X chromosome, we performed them using just allelic chrX data (Fig. 9E, F). This

analysis yielded AUCs of 0.728 and 0.662 for alignment of interaction data with gene

expression and accessibility, respectively, nearly as high as those obtained using

genome-wide data. Surprisingly, the alignment of cells based on allelic expression and

accessibility using just X-linked data produced a much poorer alignment (AUC = 0.65)

than that achieved using genome-scale data (AUC = 0.907) (Fig. 9D). Conversely, al-

though the alignment of cells using allelic expression and accessibility data from all au-

tosomes or chr1 alone produced results similar to that seen using genome-wide data

(AUC = 0.911 and 0.848 respectively), alignment of cells based on autosomal or chr1

allelic expression and interaction data was relatively poor (AUC = 0.684 and 0.648, re-

spectively) (Additional file 1: Fig. S8G–K). This suggests that the alignment of cells by

allelic expression and 3D structure data is largely driven by the structural changes that

occur to the future Xi during the course of differentiation due to XCI. Indeed, using

data from both chrX and chr1 results in reasonable alignments based both on allelic ex-

pression and accessibility (AUC = 0.863) as well as based on allelic expression and

interaction data (AUC = 0.732) (Additional file 1: Fig. S8I, L).
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In conclusion, we were able to align single-cell datasets measuring three distinct mo-

dalities—gene expression, chromatin accessibility, and 3D chromosome organization—

using unsupervised MMD-MA. To our knowledge, this is the first time an in silico co-

Fig. 9 Alignment of allelic multimodal data during time course of ESC differentiation. A Embedding of
allelic sci-RNA-seq and sci-ATAC-seq topic matrices (see Additional file 1: Fig. S8A, B, D, E) learned by MMD-
MA, projected in 2D via PCA. In the left-hand panel, each data point represents a cell colored by assay type.
In the right-hand panel, each data point represents a cell colored by time point and the mean curve (AUC)
score is shown (Additional file 1: Table S5; see Methods). B Embedding of allelic sci-RNA-seq and sci-Hi-C
topic matrices (see Additional file 1: Fig. S8A, C, D, F) learned by MMD-MA. Projection and panels as in A. C
Embedding of allelic sci-ATAC-seq and sci-Hi-C topic matrices (see Additional file 1: Fig. S8B, C, E, F) learned
by MMD-MA. Projection and panels as in A. D As in A, but only using chrX data. E As in B, but only using
chrX data. F As in C, but only using chrX data. G Schematic representation of the onset of structural
changes throughout the genome and the X chromosome during female ESC differentiation. The
proportions of cells with a specific feature are shown for each time point (labeled at top) by shades of blue
corresponding to % of cells with that feature (Fig. 4D, E; Fig. 8E). Specific features are listed at left from top
to bottom. Three types of genome-wide nuclear configuration detected by sci-Hi-C are schematized to
reflect fewer long-range contacts in ESCs, partially condensed chromatin in the intermediate stage, and
condensed chromatin in differentiated cells. The X chromosomes (ovals) appear to change structure at the
same time as the rest of the genome, and their structure remains similar to that of other chromosomes in
ESCs and at the intermediate stage. At the differentiated stage the Xi condenses along with the rest of the
genome, but very long-range contacts are further enhanced to form the highly condensed Xi bipartite
structure (red). Loss of chromatin accessibility and silencing of genes on the Xi proceed ahead of the
structural changes
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assay has been used to align three disjoint single-cell datasets. This multimodal align-

ment improves the grouping of cells by time point. This can potentially aid in the iden-

tification of single-cell relationships among gene expression, chromatin accessibility,

and nuclear structure during differentiation. The sci-RNA-seq and sci-ATAC-seq data

show strong alignments as expected since the methods evaluate gene expression and

associated cis regulatory changes, respectively. In contrast, alignments with sci-Hi-C

data reveal a number of cells that do not align, which could be due in part to nuclear

structure variability. However, this may also reflect the observed lag in structural

changes versus gene expression and chromatin accessibility changes during differenti-

ation, as well as differences in the nature of the developmental changes observed—pro-

gressive gene expression and chromatin accessibility changes versus abrupt nuclear

structure changes.

Discussion
Allelic single-cell profiling of differentiating mouse ESCs based on gene expression,

chromatin accessibility, and 3D chromosome structure combined with novel computa-

tional approaches to integrate these datasets provides a comprehensive roadmap of the

dynamics of nuclear structure during differentiation and XCI. A major conclusion is

that whereas gene expression and chromatin accessibility progressively change during

differentiation, structural changes in nuclei are more abrupt and can be classified into

three distinct stages based on the distribution of mid-range and long-range contacts

(Fig. 9G). The establishment of a condensed bipartite Xi in which very long-range con-

tacts are highest proceeds in parallel to those in the rest of the genome. Thus, all chro-

mosomes including the Xi undergo a stepwise condensation of heterochromatic

regions. Our single-cell analyses reveal distinct nuclear configurations, including an

early stage (ESCs at d0), an intermediate stage (d3 and d7 of EB differentiation), and a

differentiated stage (NPCs and d11 of EB differentiation). This helps define three stages

of chromosome configuration characterized by specific ratios of long-range versus

medium-range contacts. The significant increase in long-range contacts in cells at the

intermediate stage versus the early stage indicates the early formation of condensed

heterochromatic regions, and the further increase in long-range contacts in cells at the

differentiated stage marks a second phase of heterochromatin condensation.

Studies of early mammalian development in vivo have shown that chromatin exists in

a relaxed state after fertilization, followed by progressive formation of higher-order

chromatin architecture during early development up to embryo implantation [2–4].

These bulk and single-cell Hi-C-based analyses are focused on stages between gametes

and preimplantation embryos, which show the appearance of TADs and the progressive

formation of A/B compartments, resulting in a plaid-like structure in Hi-C contact

maps. Mouse ESCs are derived from the inner cell mass of later embryos after implant-

ation and thus can serve as a model of subsequent developmental events. ESCs are

known to be generally transcriptionally active, suggesting a dispersed chromatin struc-

ture correlated to pluripotency that becomes remodeled during differentiation and pro-

gressive gene silencing [66]. This is supported by a study based on electron

spectroscopic imaging, which showed globally dispersed chromatin in cells from the

inner cell mass and in ESCs from embryonic stage E3.5, in contrast to compacted chro-

matin located near the nuclear envelope in epiblasts and epiblast-like stem cells at
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embryonic stage E5.5 [67]. A similar study based on the differentiation of ESCs to

NPCs confirmed this transformation in chromatin organization [68]. A pluripotency-

specific genome organization has also been recapitulated during reprogramming from a

differentiated state [69, 70]. Furthermore, consistent with our results, bulk studies of

mouse ESC differentiation show evidence of A/B compartments, which become stron-

ger during differentiation in NPCs and are further enhanced in cortical neurons and

the brain [1, 5]. This global heterochromatin formation and condensation is correlated

to changes from early to late replication timing and subnuclear positioning during dif-

ferentiation [5, 68].

We find that the Xi-specific bipartite structure appears simultaneously with changes

in contact distribution for other chromosomes. Using a novel application of trajectory

analyses based on allelic CDPs derived from our sci-Hi-C data, we observed three dis-

tinct stages of condensation of the Xi concurrent to those observed in the rest of the

genome (Fig. 9G). The Xi-specific bipartite structure becomes apparent in differentiat-

ing female ESCs at d7 but is not prevalent at d3, suggesting that late-stage events such

as macroH2A enrichment, SMCHD1-mediated DNA methylation, and late DNA repli-

cation may assist the assembly of the Xi bipartite structure [5, 18, 19, 55, 71]. In con-

trast, Xist coating very quickly initiates silencing via early histone modifications [72]. A

recent study shows that during ES differentiation there is an early phase of SPEN accu-

mulation for X silencing at d3, followed by a late phase of much greater accumulation

at d5–7 to stabilize the Xi, which could correspond to the initial formation of a con-

densate [73]. Bulk studies of mouse ESCs have suggested the existence of an intermedi-

ate stage of Xi condensation via S1 and S2 compartments, which would then fuse in

the presence of SMCHD1 [18]. Whether these S1/S2 compartments potentially repre-

sent the intermediate stage we detected is unclear. Interestingly, SMCHD1 is recruited

to the Xi at d7 with only ~20% of cells showing Xi enrichment, but then increases rap-

idly to ~80% at d9 [55]. In another study, which specifically examines XCI mainten-

ance, the authors suggest that condensation of the Xi is maintained by accumulation of

proteins recruited by XIST to form a condensate [11]. The possibility that a threshold

concentration of proteins needs to be attained in order to form an Xi condensate is

consistent with our findings of discrete changes in contact distribution. Our trajectory

analyses show that cells at d11 and NPCs cluster together along a branch that repre-

sents the differentiated state based on their CDPs. By demonstrating that the d11 EB

cells and the NPCs clearly derive from different germ layers, we further show that the

trajectories built based on CDPs represent nuclear configuration differences associated

with differentiation rather than cell types. Additional changes in heterochromatin con-

densation in specific cell types in different lineages remain to be characterized. We find

that trajectories that reflect differentiation branches could be built using allelic, but not

non-allelic, sci-Hi-C data. Trajectories were obtained not only for the X chromosomes,

but also for the whole genome and for autosomes only, suggesting that inherent struc-

tural differences between homologs exist, possibly due to imprinted genes or other

mono-allelically expressed genes [16, 74]. We also cannot exclude the indirect effects of

the heterochromatic Xi on the 3D structure of the rest of the genome.

Based on the alignment of datasets and on trajectories, we show that the timing of

initiation of the Xi-specific structure is variable among cells and lags behind Xist RNA

coating and silencing of the Xi. Indeed, more than 80% of Tsix-stop cells already have
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an Xist RNA cloud at d3, but only 34% have acquired an Xi structure (this study) [57].

The higher proportion of cells showing an Xi marked by Xist using microscopy com-

pared to those with a detectable bipartite structure by sci-Hi-C could be due to meth-

odological differences. Certainly, Xist upregulation and cis-coating on the Xi would be

expected to be an early event. However, as discussed above, the establishment of a full

bipartite structure requires late events to assemble the heterochromatic structure [5,

18, 55, 71, 75]. The presence of a few cells scored as positive for a bipartite X at d0

could be due to the stringent threshold chosen, but could also reflect the presence of a

bipartite X in a few undifferentiated cells. There is evidence that the X chromosomes

may switch between two different states prior to XCI in a proportion of mouse ESCs,

as a way to initiate random XCI upon differentiation [76].

While Xist and H3K27me3 remain associated with the mouse Xi through the cell

cycle, our results show loss of the Xi bipartite structure at mitosis [77]. The Xi bipartite

structure reappears upon exit from mitosis, suggesting a possible “bookmark” mechan-

ism of the Xi bipartite structure, which could be mediated by CTCF binding at Dxz4.

CTCF bookmarking sites in ES cells are abundant and generally involved in gene reacti-

vation after replication and mitosis [78]. In contrast, somatic cells have few such sites,

which are involved in maintaining chromatin structure, for example, specific loops at

imprinted genes [79–81].

By single-cell RNA-seq and ATAC-seq, we clearly detected a delay in the differenti-

ation of female versus male cells, a finding consistent with a differentiation block in fe-

male cells due to the presence of two active X chromosomes [62, 63]. This delay shows

cell-to-cell heterogeneity and is inversely correlated with upregulation of Xist and initi-

ation of XCI, as evidenced by the detection of two groups of female cells at d3, includ-

ing one group with high Xist expression and similar transcriptome and chromatin

accessibility kinetics as male cells, and a second group with low Xist expression and

slower expression kinetics. The female-specific delay almost disappears at d7 and d11,

suggesting that dosage compensation by XCI of genes related to differentiation may re-

lease this delay. A recent study has identified specific X-linked genes implicated in the

MAP kinase (MAPK) signaling pathway that must be silenced to allow XX cell differen-

tiation [63]. Interestingly, subtle differences in X-linked and autosomal expression pro-

files were observed between male and female cells at d7, d11, and NPCs based on

UMAP-based clustering analyses, suggesting that sex differences persist at later differ-

entiation time points due to genes that escape XCI in females and/or the presence of

Y-linked genes in males. However, these findings should be confirmed in additional cell

lines.

Conclusion
In this study, we define three stages of chromosome configuration characterized by spe-

cific ratios of long-range versus medium-range contacts measured by single-cell Hi-C

during mouse ES cell differentiation. Initially, undifferentiated ES cells show few long-

range contacts and many medium-range contacts, whereas cells at an intermediate

stage of differentiation demonstrate early formation of condensed heterochromatic re-

gions. A third stage representing a second phase of heterochromatin condensation is

observed in differentiated cells. These changes affect both the X chromosomes and the

autosomes, with the inactive X chromosome demonstrating the most extreme changes.
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Our single-cell analyses reveal a mixture of distinct cells with or without condensed

heterochromatin, suggesting that certain thresholds of factors involved in heterochro-

matin condensation have to be reached to form condensates. We find that the appear-

ance of cells with an inactive X chromosome structure is delayed compared to the

onset of gene silencing. Cells were aligned at each time point of differentiation and

along developmental trajectories characterized by specific gene expression, chromatin

accessibility, and 3D chromosome structure, effectively providing in silico co-assays.

Our alignment approach will help understand the relationships between the 3D nuclear

structure, chromatin features, and the transcriptome in various cell types and during

development.

Methods
Cell lines

Patski cells are fibroblasts derived from 18dpc embryonic kidney from a cross between

a Mus musculus strain C57BL/6J (B6) female with an HprtBM3 mutation and a Mus

spretus (spret) male (Fig. 1). Cells have been selected in HAT (hypoxanthine-aminop-

terin-thymidine) media such that the B6 chrX is always inactive, as verified in previous

studies [15, 82]. Patski cells were cultured in Dulbecco’s modified Eagle medium

(DMEM) with 10% FBS and 1% penicillin/streptomycin.

Mouse embryonic stem cells (ESCs) F121-6 (female; F121 hereafter) and F123 (male)

derived from a cross between Mus musculus strain 129/SV-Jae (129) and Mus casta-

neus (cast) were obtained from J. Gribnau. A second female F1 hybrid ESC line, ES_

Tsix-stop, was derived from the same cross between 129 and cast, followed by the

introduction of a transcriptional stop in the Tsix gene on the 129 chrX (Fig. 1) [83]. In

cells differentiated from ES_Tsix-stop, the Xi is always from 129. All mESCs were cul-

tured and expanded on MEF feeders following the standard operating procedure de-

signed for F123 (https://www.4dnucleome.org/cell-lines.html), except for the addition

of 1% penicillin/streptomycin.

Differentiation of mESCs into EBs was done using a standard LIF-withdrawal proto-

col. In brief, mESCs were grown on gelatin-coated plates for two passages to remove

MEF feeders. Feeder-free mESCs were harvested and aliquots saved as day 0 (d0). The

remaining cells were cultured in a regular medium (10% FBS and 1% penicillin/strepto-

mycin in DMEM with high glucose) in non-adherent petri dishes for 11 days of EB dif-

ferentiation. EBs were collected at days 3, 7, and 11 (d3, d7, and d11) and treated with

accutase to prepare single-cell suspensions (Fig. 1). An aliquot of d11 EBs was used to

derive NPCs using a published protocol with slight modifications [84]. In brief,

accutase-treated d11 EBs were plated onto adhesive tissue culture dishes precoated

with 1% gelatin in a regular medium. Selection of NPCs was initiated 24h later by re-

placing the medium with serum-free selection medium consisting of 1:1 DMEM/F12:

neurobasal medium plus 1xN2 supplement (GIBCO, 50x) for ~5 days. After selection,

cells were harvested and grown for 5–6 passages in NPC expansion medium (selection

medium with the addition of 2% B27 [GIBCO], 20 ng/ml bFGF [Sigma], and 20 ng/ml

EGF [Sigma]) before collection for single-cell analysis. NPCs were identified by staining

with an Alexa Fluor 488-conjugated antibody for nestin (Millipore Cat. # MAB353A4;

Additional file 1: Fig. S9). A clonal F121 NPC line was derived from the bulk culture by
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single-cell-patch picking. This NPC clone was found to carry an Xi from 129 in all cells

as shown by SNP analysis of sci-RNA-seq. Establishment of XCI in female ES cells

(F121 and ES_Tsix-stop) and control male cells F123 collected from d0 to d11 and

from NPCs was tested by Xist RNA FISH and verified in NPCs by H3K27me3 immuno-

fluorescence to detect the Xi (Additional file 1: Fig. S9). Xist RNA FISH was done using

a 10 kb Xist cDNA plasmid (pXho, which contains most of exon 1 of Xist) as described

[85]. Immunostaining of paraformaldehyde-fixed nuclei using an H3K27me3 antibody

(Millipore Cat. # 07-449) was done in female NPCs as described [85]. About 100 or

more nuclei were scored for the presence/absence of Xist RNA clouds or for the pres-

ence of an enriched H3K27me3 cluster (Additional file 1: Fig. S9). EB differentiation of

mouse ESCs (F123, F121, and ES_Tsix-stop) was repeated to generate replicates by col-

lecting cells at d0 and d7. In addition, d7 EBs were plated back to adhesive cell culture

dishes to allow EB attachment and outgrowth of differentiated fibroblasts, which were

collected at d20.

sci-Hi-C

Sci-Hi-C was done according to published protocols [36, 86]. To control for aberrant

cell aggregation, human cells were mixed with the mouse cells. Sci-Hi-C libraries were

processed using a publicly available pipeline [36, 86], which was adapted to process

allelically segregated reads. Reads were aligned to an N-masked C57BL6/J reference

genome (mm10) where every SNP locus (129 or cast for the F123, F121, and ES_Tsix-

stop cell lines; B6 or spret for the Patski cell line) was substituted with an N to reduce

mapping bias. The pipeline resulted in lists of contact pairs for all cells with at least

1000 uniquely mapped contact pairs, a cis:trans ratio ≥1 and ≥95% of reads mapping to

either the mouse or human genome (Additional file 1: Table S1). Reads from human

cells were used to estimate the doublet rate and to filter cells with high alignment rates

to both the mouse and human reference genomes. Contact matrices for the mouse gen-

ome were generated from the valid pairs by summing counts within bins of a specified

size (e.g., 500kb). To obtain allelic information, each valid contact pair was segregated

to its parental allele of origin if either end of the read pair contained at least one SNP

particular to one of the parental strains. SNPs were based on Sanger data for mouse

strain 129 and mouse species M. spretus and M. castaneus, compared to the mm10 B6

reference assembly [87, 88]. Read pairs containing no SNPs or containing SNPs belong-

ing to both parental strains could not be unambiguously assigned to a single allele and

were discarded, except for non-allelic analysis.

Allelic contact decay profiles (CDPs) for each cell were generated by summing the al-

lelic intrachromosomal contact counts with respect to contact distance within expo-

nentially increasing contact distance ranges, as described [33] (Additional file 1: Fig.

S2A). Specifically, bin boundaries corresponded to the series of distances 2x to 2(x+1)

for x within the range [10; 27.750] incrementing by a step size of 0.125. For each cell,

counts within the 143 bins were scale normalized to account for coverage differences

between cells.

For cell cycle analysis, the cells were grouped into four clusters by k-means clustering

using the Spearman correlation distance between the non-allelic CDPs aggregated

across all autosomes within the 50kb to 8Mb range for each cell. This is a contact
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length range described by [33] to best capture cell cycle dynamics. The four clusters

correspond to cells in different stages of the cell cycle progressing from mitosis into dif-

ferent stages of interphase.

In differentiated cells (e.g., Patski and NPCs) in which XCI is complete, the Xi shows

a distinct CDP compared to that of the Xa and autosomal alleles. Specifically, the Xi

CDP shows a lower proportion of mid-range contacts (85 kb–1.1 Mb) and a higher

proportion of very long-range contacts (6.5–87 Mb). This difference was made even

more evident when noise due to sparsity was reduced by further aggregating the con-

tact counts into non-overlapping sets of 10 logarithmic bins for each homolog of each

pair of chromosomes of each cell, resulting in allelic CDPs with 14 bins. A Spearman

correlation between the resulting rebinned allelic CDPs for each homolog was calcu-

lated for each chromosome of every cell with sufficient coverage, i.e., at least 100 intra-

chromosomal contacts from each allele in Patski cells and at least 50 intrachromosomal

contacts from each allele in the other cell types analyzed together. A lower Spearman

correlation coefficient between the rebinned CDPs of the Xi and Xa is indicative of the

Xi having assumed a 3D conformation of a cell that had undergone XCI. A threshold

value (ρXi
CDP) was chosen based on a 10% false-positive rate (FPR) using the distribu-

tion of Spearman correlation coefficients between the rebinned allelic CDPs of the chr1

homologs, which would be expected to show a high CDP correlation. Cells with a

Spearman correlation between the rebinned allelic CDPs of the chrX homologs below

ρXi
CDP were deemed to have one chrX homolog that had assumed the Xi 3D structure,

but the identity of this homolog was unknown in the case of cells with random XCI.

To determine which chrX homolog had acquired a 3D structure characteristic of the

Xi in cells such as F121 cells, where XCI is only partially skewed during differentiation,

the difference between the total long-range (6.5–87Mb) and mid-range (85kb–1.1Mb)

contact counts was assessed for each homolog of each cell, referred to hereafter as the

long-range to mid-range difference (LMD). The difference between the resulting allelic

LMDs for each homolog was calculated for each chromosome of every cell with suffi-

cient coverage, in the same fashion as the Spearman correlation analysis. A large LMD

difference between the rebinned CDPs of chrX homologs A and B, say, is indicative of

the fact that homolog A has assumed the Xi 3D structure. A threshold value (δXi
LMD)

was chosen based on a 10% FPR using the distribution of LMD differences between the

rebinned allelic CDPs of the chr1 homologs, which would be expected to show little

difference in their LMDs. Cells with an absolute LMD difference between the rebinned

allelic CDPs of the chrX homologs greater than δXi
LMD were deemed to have an chrX

homolog that had assumed the Xi 3D structure and the homolog with the higher LMD

was classified as the Xi. This LMD analysis in cells with skewed XCI (Patski cells,

cloned F121 NPCs, and differentiated Tsix-stop cells) successfully identified the default

chrX homolog to be the Xi, assuring the accuracy and efficiency of this method in clas-

sification of the Xi based on 3D structures.

To count the number of read pairs spanning each locus along a chromosome across

all contact length scales out to a set distance (Fig. 4F, G), we used a “contact score”—

an adaptation to the “coverage score” metric used in [7, 8]. Briefly, the contact score

for each bin at a particular resolution was calculated as the average number of interac-

tions within bins spanning this central bin of interest. This score calculation can be vi-

sualized as sliding a V-shaped region (with the arms of the V extending out 20Mb)
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along the diagonal of the contact map and calculating the mean interaction counts

(sum of counts/number of bins) within the region. We excluded bins within the first

and last 10Mb of the chromosome in order to avoid edge effects. In addition, a pseudo-

count of 1 was added to all bins. The scores were normalized by calculating log2(cover-

age score/chromosomal mean), and a five-window, degree two polynomial Savitzky-

Golay filter was applied to the resulting vector to smooth the signal. For the purposes

of smoothing, bins without values were spline interpolated but replaced with NaNs

after smoothing.

sci-RNA-seq

Sci-RNA-seq was performed on nuclei isolated from non-fixed frozen cell aliquots

using a published protocol [46, 89]. Sci-RNA-seq libraries were processed using a pipe-

line by the Trapnell lab [46], adapted to handle allelically segregated reads, including

aligning reads to an N-masked B6 reference genome (mm10), as described above. The

pipeline produces CellDataSet (CDS) files that contain genes-by-cell count matrices of

unique molecular identifiers (UMIs) per gene, which were used for all downstream ana-

lysis. Genes with coverage along one allele in at least 10 cells and cells with at least 10

UMIs per each chr1 and chrX allele were included for downstream analysis. Mapped

single-end reads were segregated to their allele of origin if the read contained at least

one SNP particular to exactly one of the parental strains. Reads containing no SNPs or

containing SNPs belonging to both parental strains were discarded, except for non-

allelic analysis. Genes expressed from one allele in at least 10 cells and cells with at

least 10 UMIs in chr1 and in chrX were included (Additional file 1: Table S3).

To assess the XCI status of each cell, the total allelic expression (TAE; i.e., total UMI

counts) for each chrX homolog was calculated, and the log2 ratio between the total ex-

pression between the two homologs was determined. A large difference in the TAE be-

tween chrX homologs A and B, say lower for B, is indicative of the fact that homolog B

has been silenced. Using a similar approach to that used to identify significantly differ-

ent allelic CDPs, a differential expression threshold (δXi
TAE) was chosen based on a 10%

FPR using the distribution of TAE log2 ratios between the rebinned allelic CDPs of the

chr1 homologs, which would be expected to show biallelic expression. Cells with an ab-

solute TAE log2 ratio between their chrX homologs of greater than δXi
TAE were

deemed to have an chrX homolog that had undergone XCI, and the homolog with the

higher TAE was classified as the Xa.

sci-ATAC-seq

Sci-ATAC-seq was done using a published protocol [47]. Sci-ATAC-seq libraries were

processed using a pipeline created by the Trapnell lab (https://github.com/cole-

trapnell-lab/ATAC-Pipeline-Dev), which we adapted to handle allelically segregated

reads, including aligning reads to an N-masked B6 reference genome (mm10), as de-

scribed above for sci-Hi-C. Similar to the sci-RNA-seq pipeline, the sci-ATAC-seq

pipeline produces CDS files that contain count matrices of UMIs per accessible region.

These regions are defined as peaks of accessibility called using MACS2 on the aggre-

gated sci-ATAC-seq data. Accessible sites with coverage in at least 10 cells were in-

cluded. The CDS files were used for all downstream analysis. Aligned paired-end reads
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were segregated to their allele of origin as described above. Accessible regions with

coverage along one allele in at least 10 cells and cells with at least 10 UMIs per each

chr1 and chrX allele were included (Additional file 1: Table S4).

To assess the XCI status of each cell, the total allelic accessibility (TAA; i.e., total

UMI counts) for each chrX homolog was calculated, and the log2 ratio between the

total accessibility between the two homologs was determined. A large log2 ratio in the

TAA between chrX homologs A and B, say greater for A, is indicative of the fact that

homolog B has been silenced. As was done for the TAE (described above), a differential

accessibility threshold (δXi
TAA) was chosen based on a 10% FPR using the distribution

of TAA log2 ratios between the rebinned allelic CDPs of the chr1 homologs, which

would be expected to show equal levels of accessibility. Cells with an absolute TAA

log2 ratio between their chrX homologs of greater than δXi
TAA were deemed to have an

chrX homolog that had undergone XCI, and the homolog with the higher TAA was

classified as the Xa.

Dimensionality reduction, topic modeling, and trajectory analyses

Dimensionality reduction was performed using both PCA and Uniform Manifold Ap-

proximation and Projection (UMAP) using default parameters [90]. Trajectory analyses

were generated by Monocle2 [59] using the DDRtree algorithm [58] in semi-supervised

mode using differentially expressed features (genes, accessibility sites, or CDP bins) across

the time points.

Topic modeling was performed on binarized feature-by-cell count matrices using cisTo-

pic [91]. CisTopic employs a Latent Dirichlet Allocation (LDA) topic modeling algorithm,

which decomposes a gene-by-cell count matrix into a topics-by-cell matrix and a cells-by-

region matrix, with the topics capturing the most prevalent patterns of features in cells

thereby enhancing cell type-specific signals in the data. The runCGSModels() was applied

to the binarized count matrices with default parameters (burnin = 250, iterations = 500).

The model with the maximum log-likelihood was always selected as the number of topics.

Gene ontology (GO) analysis was conducted on topic-associated genes using GREAT

[92]. In the case of the sci-ATAC-seq data, genes proximal to accessibility sites were used.

Integration of datasets by MMD-MA

To align the F121 cells, which have sci-RNA, sci-ATAC, and sci-Hi-C data at five time

points, we employed the Maximum Mean Discrepancy Manifold Alignment (MMD-

MA) algorithm [64, 65]. The raw data inputs were as follows:

� Non-allelic expression data: a gene-by-cell count matrix of sci-RNA-seq UMI tallies

within genes (rows) of each cell (columns) was used as input. Genes expressed in at

least 10 cells were included.

� Non-allelic accessibility data: a matrix of sci-ATAC-seq UMI counts within access-

ible regions (rows) of each cell (columns) was used as input. Accessible sites with

coverage in at least 10 cells were included.

� Allelic expression data: a matrix of sci-RNA-seq UMI counts within the genes from

each parental allele were concatenated together (rows) for each cell (columns).
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Genes expressed from a parental allele in at least 10 cells and cells with at least 10

UMIs in chr1 and chrX were included.

� Allelic accessibility data: a matrix of sci-ATAC-seq UMI counts within accessible

regions from each parental allele concatenated together (rows) for each cell (col-

umns). Accessible regions with coverage along a parental allele in at least 10 cells

and cells with at least 10 UMIs per each chr1 and chrX allele were included.

� Allelic DNA interaction data: a matrix of sci-Hi-C-based concatenated contact

decay counts within logarithmically increasing sized bins for both parental alleles of

each chromosome (rows) for each cell (columns). Only cells with at least 50 con-

tacts in each allele from chr1 and chrX were included.

Prior to alignment, each of the aforementioned count matrices was decomposed into

topic-by-cell and feature-by-topic matrices using cisTopic [91]. The topic-by-cell matri-

ces served as input to the MMD-MA algorithm, as in [65]. A key assumption of MMD-

MA is that the data is sampled from the same underlying distribution, so before apply-

ing MMD-MA to our sci-RNA-seq and sci-ATAC-seq measurements, we first subsam-

pled the cells from the five time points (d0, d3, d7, d11, NPCs) to ensure that the

fraction of cells in each time point was consistent across the two datasets (Additional

file 1: Table S5).

The MMD-MA algorithm aligns the single-cell data points from multiple domains by

optimizing an objective function that reduces the overall similarity of the projected cell

distributions, as measured by MMD. To select hyperparameters, including the number

of dimensions of the shared latent space, we optimized the segregation of cells by their

respective time points. We optimized the MMD-MA algorithm for the range of hyper-

parameters used in [65], including the size of the latent space in which the two datasets

were aligned (Additional file 1: Table S5).

We evaluated the algorithm’s alignment performance using the time point labels as

orthogonal information to calculate the area under the curve (AUC) of a receiver oper-

ating characteristic curve (Additional file 1: Table S5). For each point in the aligned

space, we calculate its Euclidean distance from other points, using them as scores. Next,

we assign binary labels such that if a point belongs to the specific time point cluster, it

is assigned label “1” else “0”. Hence, for a point in a time point cluster, the AUC score

calculation measures whether other points in the same cluster are closer than (hence

ranked higher than) the points outside the cluster. This evaluation is done separately

for each time point (relative to all other time points), and the four AUC scores are av-

eraged. Therefore, in the learned latent space where both datasets have been aligned,

the AUC analysis quantifies how well cells from the same time point but measured in

different modalities occur near one another. We split the data into training (70%) and

validation sets (30%) and used the AUC score metric on the validation data to select

the best performing hyperparameters.
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