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Dimensionality reduction by UMAP to visualize
physical and genetic interactions
Michael W. Dorrity 1,3, Lauren M. Saunders1,3, Christine Queitsch1, Stanley Fields 1,2✉ & Cole Trapnell 1✉

Dimensionality reduction is often used to visualize complex expression profiling data. Here,

we use the Uniform Manifold Approximation and Projection (UMAP) method on published

transcript profiles of 1484 single gene deletions of Saccharomyces cerevisiae. Proximity in low-

dimensional UMAP space identifies groups of genes that correspond to protein complexes

and pathways, and finds novel protein interactions, even within well-characterized com-

plexes. This approach is more sensitive than previous methods and should be broadly useful

as additional transcriptome datasets become available for other organisms.
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A central goal of biological studies is the identification and
characterization of proteins that act in a common cellular
pathway. Efforts toward this goal have been greatly aided by

large-scale perturbation analyses coupled with whole-transcriptome
profiling, in which each gene’s transcriptional response to a per-
turbation is measured. If a sufficient database of expression profiles
exists, then a pathway affected by an uncharacterized perturbation
such as a gene mutation, drug treatment or growth condition—can
be described by matching the resultant profile to a known profile1.
For the yeast Saccharomyces cerevisiae, the expression profiles of a
large number of individual yeast deletion mutants have been
established and used to infer protein complexes and networks2–4.
Maximizing the utility of expression profiling approaches for
inference of physical and genetic interactions requires ever larger
such datasets. However, standard techniques, such as pairwise
correlation, do not fully capture the variation available to link gene
function as more dimensions are added from larger scale experi-
ments. Therefore, techniques that reduce dimensionality of the data
while maintaining relationships between genes are imperative for
the inference of physical and genetic interactions in very large gene
expression datasets.

Dimensionality reduction methods capture variability in a limited
number of random variables to facilitate 2- or 3D-visualization of
datasets with tens to thousands of dimensions. This approach is
recognizable in the commonly used method of principal component
analysis (PCA), which uses linear combinations of variables to
generate orthogonal axes that efficiently capture the variation present
in the data with fewer variables. Another approach, t-Distributed
Stochastic Neighbor Embedding (t-SNE), carries out dimensionality
reduction by analyzing similarity of points using a Gaussian distance
in high-dimensional space and projecting these data into a low-
dimensional space5. A more recent method, Uniform Manifold
Approximation and Projection (UMAP), estimates a topology of the
high-dimensional data and uses this information to construct a low-
dimensional representation that preserves relationships present in
the data6. UMAP has been particularly useful to precisely define cell
types in mixed populations based on data from single-cell RNA-seq
experiments7–13; it also performs well on other gold-standard
datasets6,14. Because UMAP is better able to preserve elements of the
data structure from high-dimensional space than similar outputs
from t-SNE, it captures local relationships within groups of tran-
scriptomes in addition to global relationships between distinct
groups14. This feature is especially useful in the inference of gene
relationships, which can be due to physical interaction, overlapping
gene function, or coordinated contributions to a larger cellular
process. Here, we show that the use of dimensionality reduction by
UMAP on bulk expression profiling data of 1484 single-gene
mutants of S. cerevisiae links gene function in clusters at increasingly
finer scales, corresponding to broad cellular activities, pathways,
protein complexes and individual protein-protein interactions.

Results
UMAP groups deletion mutants with shared protein function.
We assigned groups, or clusters, to deletion mutants with similar
transcriptional responses using the Louvain community detection
algorithm in low-dimensional UMAP space9. While many single-
cell transcriptomic studies use expression values from genes with
the highest dispersion across individual cells, we took advantage of
the completeness of bulk microarray data generated by Kemmeren
et al.3 and used expression values for all 6170 genes measured in
each of the 1484 single-gene deletion strains to make a UMAP
projection for subsequent clustering. This approach resolved 50
main clusters, with the number of deletion backgrounds assigned
to each cluster ranging from 4 to 298 (median of 11). Clusters
with >25 strains were subsequently sub-clustered using similar

parameters to define groups. The final dataset contains 171 clus-
ters with a median of 8 strains per cluster.

A total of 194 characterized yeast complexes have at least two
of their corresponding genes in the dataset of single deletions. For
40% of these complexes (78/194), we could assign two or more
genes to the same cluster (examples of complexes in the initial set
of 50 clusters in Fig. 1a, additional complexes were separated in
the sub-clustered set (Fig. 1b)). For example, the sub-clustering of
the original cluster 2, which is characterized by cell cycle and
chromosome organization genes, resulted in more distinctly
separating the Isw2-Itc1 chromatin remodeling complex, the
Csm3-Tof1 S-phase checkpoint complex and the Oca S-phase
histone activation complex (Fig. 1b). Within this sub-clustered
set, multiple complexes could be found among genes within a
single cluster, suggesting that these complexes may cooperatively
contribute to chromosome cohesion and recombination (Fig. 1b).

In some cases, members of individual complexes were assigned to
separate clusters, suggesting sub-functionalization of components.
For example, the 13-member mediator complex was found in three
clusters (numbers 16, 34, and 41) containing 3, 6, and 4 members of
mediator, respectively (Fig. 1a). Cluster 16 also contains members of
SAGA and SWI/SNF complexes, and loss of mediator subunits in
this cluster alters the transcription of amino acid metabolism genes
and glucose transmembrane transporters (Supplementary Data 1);
cluster 34 contains galactose-responsive subunits of mediator; and
cluster 41 contains transcriptional initiation-related mediator
subunits. Here, UMAP preserves global relationships between
clusters in addition to resolving proximal cluster members. For
example, most chromatin remodeling complexes grouped in UMAP
space, despite being present in separate clusters and containing
unique local topologies (Fig. 1a).

UMAP clustering identified the components of the pathway for
tRNA wobble uridine modification (Fig. 1c), which requires the
URM1 pathway for 2-thiolation and the Elongator complex for
side chain formation at U34 of tRNA15. The clustering revealed
two additional members that are likely to link metabolism and cell
cycle to this process. One of these, Met18, has a human ortholog
(MMS19) that functions in maturation of Fe-S cluster-containing
proteins; the conserved yeast and human Elongator component
Elp3 is one of these Fe-S proteins16. The other new member, the
PP2A phosphatase Sit4, is implicated in dephosphorylation of
Elongator; its absence leads to tRNA modification defects17.

Comparison of UMAP distance to other protein interaction
metrics. To assess whether distance in UMAP space captured
known interactions as well as pairwise correlation, we used three
gold-standard interaction datasets: (1) protein interactions
determined by co-immunoprecipitation followed by mass spec-
trometry2; (2) gene interactions from stringDB18, which are
derived from a probabilistic metric based on multiple evidence
channels including yeast two-hybrid, pathway annotations, and
co-expression; and (3) interactions from CellMAP19, which are
derived from an experimental screen for synthetic genetic inter-
actions. The UMAP distance metric captured protein complexes
more sensitively and with more precision than previous pairwise
correlation-based metrics (AUC pairwise correlation= 0.73,
AUC UMAP= 0.84, Fig. 2a). UMAP distance also captured
known interacting pairs better than distance in high-dimensional
space (AUC= 0.56) and distance in PCA space (AUC= 0.70),
suggesting that the UMAP dimensionality reduction itself adds
value in the identification of interactions (Fig. 2a, Supplementary
Fig. 1a). Across each gold-standard interaction dataset, UMAP
distance performed better than several other standard approaches
for analyzing the transcriptome data, including PCA, random
orthonormal projections20, and tSNE (Supplementary Fig. 1a, b).
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Performing clustering in UMAP space ought to produce
clusters containing more true interactions than distance in other
spaces. To test whether similar results were obtained without
UMAP dimensionality reduction, we clustered the data in PCA
space. Clustering in PCA space identified 8/50 clusters with
perfect overlap to UMAP clusters, and 34/50 that overlap by at
least 50% (Supplementary Fig. 1c).

To compare pairwise correlation with the UMAP approach, we
calculated for each known interacting pair (1) the Pearson
correlation of their deletion transcriptomes; and (2) the distance of
those two genes in the UMAP space generated by using all
deletion transcriptomes. Among these interacting pairs, UMAP
distance and pairwise correlation are negatively correlated
(Fig. 2b). However, the increased sensitivity of UMAP distance
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to detect known interactions suggests that the discrepancies
between UMAP distance and pairwise correlation might represent
interactions that were previously overlooked. Based on a UMAP
distance cutoff corresponding to a 5% FDR of known complex
members (Inset, Fig. 2b), we were able to identify 176 putative
interactions that would not have been confidently called by
previous approaches using pairwise correlations (PCC < 0.5); these
interactions contain 86 unique genes, of which 77 show co-IP or
yeast two-hybrid evidence for membership among 31 protein
complexes, while the remaining 9 genes had no such evidence.

Since proximity in UMAP space tends to capture known
interactions and shared function, distance in UMAP space could
serve as a useful tool to investigate evolutionary questions about
gene divergence. We calculated UMAP distance between 151
paralogous gene pairs in yeast and used this distance to characterize
the functional divergence between each pair (Supplementary Fig. 2a).
Proximity of paralog pairs in UMAP space did not correspond to
previous estimations of paralog divergence (Supplementary Fig. 2b,
c) based on synthetic genetic interaction (R= 0.018) or Gene
Ontology relationships (R= 0.035)19. When paralogs show a
negative genetic interaction—that is, deletion of both genes leads
to lower fitness than expected—it is assumed that the two genes
retain redundant functions. However, 11 paralog pairs whose
negative genetic interactions suggested redundant function showed
distinct downstream effects on gene expression when each gene was

deleted (Supplementary Fig. 2b, d); these genes may have distinct
effects on fitness in different environments21. In these cases, a gene
may retain the capacity to complement the essential function of its
paralogous partner, while diverging sufficiently in function as
revealed by the UMAP-based transcriptome analysis.

Despite successful clustering of many protein complexes and
pathways of yeast, the UMAP approach nevertheless identified
several clusters that did not obviously correspond to a complex or
pathway. We used GO enrichment of differentially expressed
genes in these clusters to interrogate their function: cluster
26 showed enriched terms for cell cycle, non-membrane-bound
organelles, and prions; cluster 13 showed enrichment for
mitochondrial function; cluster 46 showed enrichment for TOR
signaling and aerobic respiration; cluster 32 showed enrichment
for protein folding; and cluster 11 showed enrichment for heme
binding. Differential expression analysis produced significant
gene sets for all main and sub-clusters (Supplementary Data 1).

Discussion
Because of its greater sensitivity than other approaches, as well as
its ability to capture both local and global relationships, UMAP-
based association of gene function adds value in the identification
of protein complexes, pathways, and novel interactions in
transcriptomic datasets. However, the utility of this method is

Fig. 1 UMAP clusters single-gene deletion transcriptomes according to shared function. a UMAP coordinates of 1484 single-gene deletion strains
clustered by similarity in transcriptional effects. The initial 50 individual clusters are each shown in a different color. Strains that comprise protein
complexes are indicated alongside a bar colored according to cluster identity. Each complex is represented as a fraction: the number of complex members
found in the cluster over the number of complex members in the set of 1484 mutants. Clusters with coordinates far from the main group are shown in
boxes. Clusters without a known complex are marked as “unknown,” along with an arbitrary cluster number; these clusters are annotated with a broad GO
term enriched in that cluster. b Cluster 2 shows more distinct groupings when re-clustered separately. Annotations as in a. Cluster 2 as a whole was
enriched for cell cycle and chromosome organization, with individual clusters corresponding to parts of this process. c The tRNA wobble uridine pathway,
captured entirely within the cluster containing the Elongator complex (boxed green cluster in a). Complex members within this cluster are annotated with
orange boxes, while new members are annotated in blue. One pathway member, Nfs1, was not present in the single-gene deletion dataset. The heatmap
represents fine-scale distances between each pair of points within the cluster. Darker shades of red indicate points nearer in UMAP space; hierarchical
clustering was applied on this distance metric to group proteins within this pathway. Heterodimeric interactions, such as Ncs6-Ncs2 (bottom-right corner
of heatmap), are nearer to each other than other members of the pathway. Novel members of this pathway (blue text) are grouped with other members
based on their similarity of UMAP distance, and these new interactions are indicated with gray lines in the pathway diagram.
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dependent on the availability of high-quality profiling data from
large-scale environmental or genetic perturbation experiments.
As more datasets of this type become available, we expect that this
approach, or similar dimensionality reduction techniques, will
become increasingly useful in mapping protein complexes and
pathways both within and across other species. The recent
appearance of single-cell expression profiling data paired with
CRISPR-induced mutations will be an especially useful source of
data of this type, as these experiments include increasingly larger
numbers of mutations22. While many of the most useful appli-
cations of dimensionality reduction tend to arise from single-cell
genomics, for which typical datasets necessitate approaches like
UMAP to define relationships between cells, these approaches
may also prove useful in visualizing the spatial relationships of
biomolecules in tissues23, genetic interactions, or relationships
between human populations24.

Methods
Yeast single-gene deletion transcriptome data. Growth-rate adjusted micro-
array expression values derived from limma modeling by Kemmeren et al.3. were
used as input data. All 1484 single-gene deletion strains from this dataset were used
for subsequent dimensionality reduction.

Dimensionality reduction and clustering. To project single-gene deletion strains
into two dimensions we performed dimensionality reduction with the UMAP
algorithm6 using the wrapper function in Monocle 3 (v2.99.3)9 to project single-
gene deletion strains into two dimensions and subsequently used Louvain clus-
tering25 on strains in 2D UMAP space using default parameters (except, reduce-
Dimension: reduction_method=UMAP, metric= cosine, n_neighbors= 10,
min_dist= 0.05; clusterCells: method= louvain, res= 1e-4, k= 3). Prior to
dimensionality reduction, expression values from all 6170 yeast genes were given as
input to Principal Component Analysis (PCA) using the Monocle 3 wrapper
function “preprocess_cds”. The top 100 principal components were then used as
input to UMAP for generating 2D projections of the data. For subclustering, main
clusters 1–10 were each individually processed using top 25 principal components
in the subset data as input to UMAP dimensionality reduction and Louvain
clustering (resolution= 1e-4).

Alternative dimensionality reduction with tSNE was performed using the Monocle
3 function reduceDimension with default parameters (reduction_method= tSNE).
Dimensionality reduction using random projection, based on the Johnson-
Lindenstrauss lemma, was performed using the RandPro (v0.2.0) R package.

Differentially expressed genes per cluster. Gene expression values for single-
gene deletions within a cluster were compared to the background set of all dele-
tions. Differentially expressed genes for each cluster were calculated using the
differentialGeneTest() function in Monocle 3. Because the expression datasets were
microarray-derived rather than count-based RNA-seq data, the “gaussianff”
expression family was used; significance values were corrected for genomic infla-
tion factors using lamba gc26.

Benchmarking with known interacting pairs. To test the ability of UMAP dis-
tance, and other distance metrics, to capture known interactions, we used a curated
consensus set of protein complexes derived from two large, high-throughput mass
spectrometry datasets and GO interactions2. The consensus set was transformed
into a pairwise Boolean interaction matrix based on whether or not each pair had
been observed together in the known complex set. Using the subset of pairs that
were found in the set of 1484 single-gene deletion transcriptome datasets, for each
gene pair, we calculated Euclidean distance in UMAP space. We then used these
distances, along with labels for true and false interacting gene pairs derived from
gold standard interaction datasets, to generate receiver operating characteristic
(ROC) and precision/recall curves with the PRROC package in R27.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The raw data that support the findings of the present study were published previously3

and can be found at http://deleteome.holstegelab.nl/. Processed data are available at
https://github.com/cole-trapnell-lab/yeast_umap (see Code availability statement).

Code availability
All input data and scripts used for dimensionality reduction and clustering are available
through Github (https://github.com/cole-trapnell-lab/yeast_umap).
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Supplementary Figure 1. UMAP adds value in identification of true interactions compared 
to other methods. (A) Values for area under the curves (AUC) for precision/recall curves used 
to benchmark distance metrics for three gold-standard interaction datasets. UMAP  
substantially outperforms other metrics in the identification of true protein-protein interactions. 
Black lines show expectations of a random test. (C) Benchmarking of distance metrics over 
several confidence cutoffs for true interactions as defined by StringDB. In higher FDR sets, 
pairwise correlations outperforms our UMAP method, but not in the higher confidence 
interaction sets. Black lines show expectations of a random test, and asterisks (*) define the top 
performeY in each set. (B) Clustering to the same total number of clusters in PCA space returns 
few clusters strongly overlapping the clusters in UMAP space. 
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Supplementary Figure 2. Convergent and divergent function of paralogous gene pairs 
defined by UMAP distance. (A) Barplot showing log distance in UMAP space between 151 pairs 
of paralagous gene deletions. (B) Each paralog pair’s UMAP distance plotted against the 
experimentally-determined synthetic genetic interaction score (briefly, a more negative score on 
the SGA axis indicates that the double mutant showed a larger cellular fitness defect than the 
combined additive effect of each single mutants). Two paralog pairs are indicated, and their 
distance in UMAP space is displayed in (D) and (E). (C) Each paralog pair’s UMAP distance 
plotted against a metric for paralog divergence calculated using similarlity of GO term annotation. 
While a low score in the GO divergence metric suggests that paralog pairs have less diverged 
functions, many of these pairs are far from each other in UMAP space, suggesting that these 
paralogs show more divergent function than predicted by the GO metric. (D) Full 1484 gene 
deletion UMAP as in Figure 1A, with a divergent paralog pair (SSF1 and SSF2) highlighted. Genes 
contained in the same cluster as each paralog are listed; the SSF1 cluster (7-4) contains many 
genes required for ribosome biogenesis, while the SSF2 cluster (14) contains genes involved in 
DNA damage. (E) Full UMAP with a convergent paralog pair (ARK1 and PRK1) highlighted.  
Genes contained in the same cluster as each paralog are listed.
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