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Summary  
 
Improvements in single-cell sequencing protocols have democratized their use for phenotyping at organism-
scale and molecular resolution, but interpreting such experiments poses computational challenges. Identifying 
the genes and cell types directly impacted by genetic, chemical, or environmental perturbations requires explicit 
modeling of lineage relationships amongst many cell types, over time, from datasets with millions of cells 
collected from thousands of specimens. We describe two software tools, “Hooke” and “Platt”, which exploit the 
rich statistical patterns within single-cell datasets to characterize the direct molecular and cellular consequences 
of experimental perturbations. We apply Hooke and Platt to a single-cell atlas of thousands of perturbed zebrafish 
embryos to synthesize a coherent map of lineage dependencies and leverage it to reveal previously 
unappreciated roles for fate-determining transcription factors. We show that the co-variation between cell types 
in single-cell datasets is a powerful source of information for inferring how cells depend on genes and one 
another in the program of vertebrate development.  
 
Introduction 
 
Single-cell genomics technology has advanced at a blistering pace. The throughput of single-cell transcriptome 
sequencing has increased by four orders of magnitude in the past five years alone1–3. The resulting economies 
of scale, in conjunction with sample multiplexing techniques, now enable single-cell genomics to not only catalog 
cell types but to comprehensively study the effects of well-controlled perturbations on animal development or 
characterize the evolution of disease pathogenesis at whole-animal scale and molecular resolution. Single-cell 
genomics experiments that compare healthy to diseased tissue or track the development of embryos over time 
typically aim to identify subpopulations of cells that differ between conditions or timepoints at the molecular level. 
When studying how a gene contributes to embryonic development, one might follow the “trajectories” cells take 
through possible gene expression states as they make fate decisions and measure how these decisions are 
altered by perturbing the gene in question. Both settings aim to define the cell types that change across 
conditions and the genes that mediate those changes.  
 
In principle, single-cell genomics could serve as an extraordinarily high-content means of phenotyping and has 
prompted calls for the systematic collection of vast amounts of data into an “atlas” of perturbations4. Trained on 
a sufficiently large corpus of molecular, cellular, and tissue phenotypes, a new generation of “foundational” AI 
models could computationally evaluate hypotheses in minutes that otherwise would require experiments that are 
difficult or impossible to perform in the lab4,5. However, the scale and complexity of such experiments poses new, 
daunting computational and statistical challenges5. Intense efforts are underway to develop software tools to 
develop bioinformatic and machine learning tools to analyze single-cell perturbation datasets6,7. Recent tools 
draw from a wide range of techniques, including deep learning and foundation models as well as more 
conventional statistical approaches including regression or Bayesian modeling, to predict mechanisms of action 
for drugs, anticipate effects on gene regulation of different cell types, locate novel genetic interactions, and more. 
For example, scGen8 and CPA9 use variational autoencoders to model changes within the transcriptome of 
individual cells in response to both seen and as-yet-untested genetic perturbations. Other tools, such as 
CellOracle10, SCENIC+11, and D-SPIN12, adopt a “bottom-up” approach, first learning gene regulatory networks 
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and then using them to predict how interventions in the network will impact each cell’s transcriptome. Some tools 
for comparing perturbations to controls, such as Propeller13, perform differential analysis on the proportions of 
cell types within a previously defined ontology, while others such as MILO and MELD do not require cell type 
annotations ahead of time14.  
 
Despite the explosion of algorithms, machine learning methods, and software tools for handling single-cell 
perturbation experiments, there remain open problems and unmet challenges, particularly in the contexts of 
developmental genetics and disease pathogenesis. A first challenge is that most perturbation experiments are 
performed in cell lines (e.g. CROP-seq15), and accordingly most tools are designed to model changes in the 
transcriptome of a single cell type that might exist in several similar molecular states. Few, if any, tools exist for 
analyzing effects at the scale of complex tissues, let alone whole embryos, where perturbations can alter both 
the proportions and molecular states of hundreds of distinct cell types. A second challenge is that effects on 
progenitors impact their descendants in the cell lineage, and the network of lineage and signaling dependences 
between cell types is thus needed to locate those most directly impacted by a perturbation. A third challenge is 
that tracking how a perturbation’s effects ripple through the system can be crucial for discriminating causal 
relationships between genes from coincidental ones, especially in the developing embryo, but few tools explicitly 
model time or cell lineage relationships when performing contrasts, and none do so simultaneously. Inferring 
new cell lineage relationships, genetic requirements, and ultimately mapping the genetic circuits that control cell 
fate and function from single-cell perturbation experiments requires a computational framework that meets all 
these challenges at once. There is therefore an urgent need for algorithms, statistical methods, and software 
that meets the challenges posed by single-cell analysis at “atlas scale”. 
 
Here, we describe two new algorithms that analyze perturbation experiments performed with single-cell 
transcriptomics to define how cells transition between cell states and characterize the molecular changes that 
occur as they do so. First, we introduce Hooke, a software package that estimates how the proportions of cells 
in different molecular states change across specimens, over time, in response to perturbations, and across 
varying experimental conditions. Hooke introduces the use of Poisson-log Normal (PLN) networks16 for modeling 
the how proportions of different cell types co-vary in single cell genomics experiments. We show that the 
correlations structure between cell abundances is a crucial source of statistical information that reveals lineage 
relationships between cell types and links pathological cell states to the healthy ones that give rise to them. 
Second, we introduce Platt, which analyzes one or more perturbation experiments to produce a map of direct 
transitions that cells can make between molecular states. When provided with time-series perturbation 
experiments that target genes or pathways required by one or more cell types, Platt follows how other cell types 
are subsequently depleted and is thus able to identify cells’ ancestral states. Hooke and Platt work in concert to 
detect transcriptional and cell abundance phenotypes and relate them to one another, which helps users 
understand how disruptions to gene regulation at upstream cell types or states lead to losses in cell types 
downstream. Although they work with the single-cell perturbation experiments now routinely used to explore the 
role of a gene or compare diseased specimens to healthy controls, both tools are designed to accommodate 
millions of cells from thousands of specimens collected across many perturbations. 
 
We first demonstrate these tools through an extensive reanalysis of previously published single-cell 
perturbation experiments from a mouse model of disease pathogenesis and a zebrafish model of embryonic 
development. The zebrafish embryo is a well-established system for studying development that has been used 
extensively in forward genetic screens as well as targeted genetic, chemical, and environmental perturbation 
experiments. The rapid development and high fecundity of the zebrafish makes it particularly well-suited for 
statistically-powered sequencing experiments because hundreds of “replicate” embryos can be collected at 
once. We use Hooke and Platt to revise and improve our map of cell types in the developing zebrafish embryo 
and link them together into an embryo-scale transition graph. We then analyze patterns of gene expression 
over this graph to identify transcription factors putatively required for each transition. Amongst the most 
recurrently implicated genes were lmx1ba and lmx1bb, which we found to exhibit striking patterns of activation 
in many cell fates. By deeply sequencing wild type embryos and those lacking lmx1b factors, we demonstrate 
that selective expression of these factors is required for the activation of a shared connective tissue program in 
many of these cell types.  
 
Results 
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Hooke performs differential analysis of cellular composition in single-cell perturbation experiments 
 
In order to locate the cell types within embryos or complex tissues that are impacted by a perturbation, we sought 
to devise a statistical method that could isolate changes in each cell type’s proportions while controlling for other 
technical effects like batch or dissociation protocol. However, modeling observed counts of different cell types 
as a function of biological and technical covariates is nontrivial, because the covariates may not be independent 
(e.g. time and sample collections are related), the count data may be sparse (e.g. because sampling many cells 
per sample is costly), and there may be a complex correlation structure between the cell types (e.g. progenitors 
and descendants are inversely correlated in their proportions). We therefore required a statistical framework that 
accommodates sparse count data, flexibly describes cell proportions as a function of both biological and 
technical covariates, and learns the covariance structure of cell proportions from the data provided to it. We 
identified Poisson Lognormal (PLN) models as a promising candidate framework for building our new statistical 
method, which we call “Hooke”, named in honor of Robert Hooke, who first described cells and coined the term17.  
 
Hooke is designed around the PLNmodels package18 to perform differential analysis of cell state abundances in 
single-cell RNA-seq experiments. As input, Hooke accepts a matrix containing the number of cells of each type 
or state observed in each sample, along with metadata for each sample (e.g. the experimental treatments applied 
to each sample, the time it was collected, etc.) (Figure 1A). Users must assign cells to types or states before 
running Hooke via clustering, marker-based annotation, or projecting them onto a reference data set19,20. As 
output, Hooke produces a fitted PLN network model through which users can visualize the cell state abundance 
changes that occur following each experimental perturbation. Users can also query the model to understand how 
cell types co-vary across samples to understand how subsets of cell types are gained at the expense of others.  
 
Briefly, Hooke works by first estimating the user’s input matrix of cell counts along with metadata for each sample 
that will be used to model factors in the user’s experiment such as timepoints, drug treatments, genotypes, etc. 
Then, it estimates per-sample “size factors” that will control for sample-to-sample variation in cell capture levels, 
similar to methods for library size normalization in RNA-seq19,21. Next, it initializes two PLN models: a “main” 
model that will estimate the proportions of each cell type as a function of all experimental variables relevant to 
the experiment, along with a second “reduced” model that includes only “nuisance” variances such as batch, etc. 
Hooke then estimates the coefficients for each model and their confidence intervals using the PLNmodels 
package. These coefficients reflect the change in the expected counts of each cell type for a given covariate. 
For the reduced model, Hooke also describes the covariance in cell proportions using variational inference via 
the PLNmodels package’s optimization routines. These correlations are captured as a network that links pairs of 
cell types that are still correlated across samples, even after having controlled for changes in all the other cell 
types (Figure 1A and Methods). We hypothesized that the covariation structure of cell type proportions reflects 
changes over time and alternative fates (i.e. we expect a progenitor and its descendant should be negatively 
correlated, while cell types that share a common progenitor should be positively correlated). 
 
To illustrate Hooke's accuracy, we tested its performance by simulating losses of cell types at different effect 
sizes and embryo sizes and calculating its ability to detect those cell types as differentially abundant (Methods). 
Hooke performed similar or better than other state of the art methods (Figure S1A). We also evaluated Hooke's 
ability to detect cell proportion changes between different genotypes as a function of three factors: the abundance 
of a given cell type, the number of replicates in each genotype group, and the effect size (Figure S1B). With 8 
specimens per treatment group and 2000 cells per embryo (as in Saunders et al., 2023), large effects (reductions 
of at least 75%) can be detected for rare cell types such as gill ionocytes and erythrocytes, and modest effects 
(reductions of ~10%) could be detected in abundant cell types such as mature fast and slow muscle, showing 
that Hooke quantifies perturbation effects comparably to state of the art methods for differential composition 
analysis.  
 
Next, to test our hypothesis that the modeling cell type proportions could link pathological and healthy disease 
states, we applied it to sci-RNA-seq data from a longitudinal mouse study of silica-induced pulmonary 
fibrosis22, which is a top occupational disease. This data set contains 23,794 nuclei from 12 mouse lungs 
across four timepoints (0, 7, 28, and 56 days post intratracheal silica) (Figure 1B). In the original study, lung 
macrophages exposed to silica adopted an osteoclast-like transcriptional profile characterized by the 
expression of bone resorbing proteases and hydrochloric acid. We therefore focused our analysis on the fine-
scale cell state annotation of myeloid cells, which contains 11 annotated cell populations (Figure S1C).  
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A Hooke model fit to these data with exposure to silica as a covariate detected a nearly 2.5-fold gain in 
osteoclast-like, pro-fibrotic macrophages (“Fibr-2” in Hasegawa and Franks et al., 2024), a 3.7-fold reduction in 
alveolar macrophages, and 2.1-fold reduction in neutrophils (q < 0.05) (Figure 1C). The effect sizes reported 
by Hooke were highly concordant with the Beta-Binomial test used in the original study (Figure S1D). Hooke 
also estimated the correlation structure between cell types in lungs, which was not previously explored. The 
PLN network linked alveolar macrophages and pro-fibrotic macrophages but not with neutrophils (Figure 
1C,D). Both macrophage subsets were shown to have the highest enrichment scores of genes associated with 
osteoclast differentiation, development, and signaling22. This link between healthy macrophages and a pro-
fibrotic, silicosis-specific state therefore recapitulates the central finding of the original study. Importantly, the 
link between healthy and osteoclast-like cells was not among the many correlations that the network model 
was able to attribute to changes in batch or based on changes in other cell types (Figure 1D). This analysis 
demonstrates that, as we hypothesized, the correlation structure between cell proportions captured by Hooke 
can link disease-specific cell states with their likely healthy counterparts.  
 

 
Figure 1. Overview of Hooke. A) Hooke constructs an individual by cell type matrix by tallying the number of 
cell groups per sample. Poisson-log normal network models estimate the effects on proportions of cell states 
and partial correlations between cell states. It compares cell state transitions between experimental 
conditionals and models cell type kinetics. B) A schematic of the experimental design of a mouse model of 
silicosis. Mice were challenged with intratracheal (i.t.) silica and collected at four timepoints. C) UMAP of 
myeloid cells colored by fold change of silica exposure relative to wild type (q < 0.05). The arrow indicates a 
negative partial correlation between a reciprocal fold change between healthy and fibrotic macrophages 
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detected by Hooke. D) Raw correlation between cell states compared to Hooke partial correlations. Boxes 
surround partial correlations between alveolar macrophages and Fibr-2 macrophages.  
 

A refined and expanded zebrafish single-cell atlas of perturbed embryos  

With a robust method to analyze changes in cell type proportions, we wanted to next apply this approach to 
investigate developmental processes at scale. To test if Hooke could be applied to atlas-scale data containing 
multiple timepoints across perturbations, we sought to model cell type abundances during zebrafish 
organogenesis. In previous and ongoing work, we subjected thousands of embryos to diverse genetic, 
chemical, and environmental perturbations, followed by whole-embryo single-cell sequencing19,23,24. The 
Zebrafish Single-Cell Atlas of Perturbed Embryos, or “ZSCAPE”, included hundreds of unperturbed or control-
injected embryos to use as basis for comparison for phenotyping the perturbations (Figure 2A), compromising 
1.2 million cells from 18 hours post-fertilization (hpf) to 96 hpf. Each perturbation experiment was projected into 
this wild type developmental atlas and labels are transferred from their top nearest neighbors in the reference 
(Methods). This consistent reference space allows us to compare each perturbation’s pattern of differential cell 
type abundance across the different tissues and cell types in the embryo.  
 
Prior to performing an embryo scale analysis of mutant embryos with Hooke, we revised and enhanced our 
wild type reference atlas. This involved stricter filtering of cells to enhance trajectory resolution and annotation, 
as well as incorporating approximately 133,000 additional control cells from Barkan et al. (see related 
manuscript file) (Methods), which is referred to here as “reference v2.0”. The UMAP was divided into 30 
partitions ("assembly groups”) representing 38 major tissues (Figure S2A,B). The refined UMAP embeddings 
facilitated the resolution of previously unidentified cell populations, including, among others, specific cell types 
in the pectoral fin, head mesenchyme, and pronephros. 
 
Despite these improvements, resolving cell type annotations in the central nervous system (CNS), particularly 
among progenitor states, remained challenging. To address this, we applied the Tangram algorithm to align 
our single-cell data with a Stereo-seq dataset from 24 hpf zebrafish embryos25,26. This approach can help infer 
the spatial origin of cell types with similar transcriptomes that would otherwise be difficult to disentangle2. This 
alignment enabled the separation of CNS progenitors into their respective forebrain, midbrain, hindbrain, and 
spinal cord assembly groups (Figure S2D-E). Within each assembly group, cells were further sub-clustered 
and annotated based on the expression of known marker genes. The earlier atlas included 156 fine-level cell 
type annotations (“cell type sub”), 95 broadly labeled cell types (“cell type broad”), and 37 tissue types (Figure 
S2C). Following recombination and re-embedding of these assembly groups, and including our new 
sequencing data, we identified 163 additional cell types at the finest resolution in reference v2.0 (Figure S2E), 
resulting in a total of 319 distinct cell types and 174 broad cell type categories (Table S1).  

An embryo-scale Hooke model of cell abundances captures their kinetics and shared cell abundance 
phenotypes 

Examining the effects of gene knockouts at a single timepoint provides a limited understanding of gene 
function, as the importance of a gene may vary across developmental stages, and tissues may respond 
differently over time. We first sought to verify that Hooke can model the kinetics of cells as they develop in the 
embryo, even in single-cell datasets comprised of many timepoints and multiple batches. Fortunately, the PLN 
framework can include covariate terms, such as experimental batch or sampled timepoint, when modeling 
changes in cell abundance. 
 
The ZSCAPE dataset contains 19 timepoints and five experimental batches, so we fit a model that included 
timepoint and experimental batch as covariate terms. This model was able to describe the smooth kinetics of 
cells in the embryonic skeletal muscle as they transition through different stages from tbx16+ paraxial 
mesoderm, through myoblasts and fusing myocytes, to mature muscle (Figure 2B). To test the model’s ability 
to subtract batch effects, we predicted each cell type’s relative abundance in each embryo conditional on its 
observed counts. After using the model to account for batch effects, the estimated proportions for each cell 
type were in agreement even for embryos from different batches and experiments, and they followed the 
overall kinetic trend of the model (Figure 2B). Importantly, the curves spanned the full extent of our atlas, from 
18 hpf to 96 hpf, despite the fact that the five experiments covered distinct time intervals, sampling regimes, 
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and levels of cell capture and sequencing depth (Figure 2B). This demonstrates that Hooke can capture the 
times when different cell types emerge or reach their peak abundance, even when integrating data from 
different experiments or batches.  
 
We next sought to use Hooke to study individual genetic perturbations as a means of defining the genetic 
requirements for cell types throughout the embryo. The ZSCAPE data contains 23 zebrafish G0 knockouts 
generated by CRISPR-Cas9 mutagenesis (crispants). Because each perturbation in ZSCAPE was collected at 
multiple timepoints, we can also assess the kinetics of perturbed cell types by fitting a Hooke model with 
genotype and timepoint as covariates (Figure 2C). By comparing the two kinetic curves, we can detect the 
time interval within which a specific cell type begins to be lost or stalled in a crispant. We performed this 
analysis in crispants lacking both tbx16 and mgsn1. These transcription factors regulate the differentiation of 
the mesodermal lineage from the neuromesodermal progenitor cells (NMPs) that normally give rise to two cell 
lineages: somitic muscle and spinal cord neurons27. Hooke’s model detected that embryos lacking tbx16 and 
msgn1 had reduced mature muscle and a significant accumulation of cells in the earlier progenitor state 
(Figure 2C), consistent with our expectation that mesodermal progenitors will fail to mature in this crispant28. 
 
Having verified that Hooke can locate the cell types and times within which mutations exert their effects, we 
scaled this approach and modeled genotype and time across our complete perturbation set of 23 crispants19. 
We found that 308 of the 319 cell types were significantly differentially abundant cell types (DACTs) in at least 
one perturbation and timepoint (Table S2). Previous modeling strategies limited us to comparing cell type 
gains and losses at a single timepoint, as the Beta-Binomial allows for modeling a single outcome at a time. 
However, because the PLN framework allows for simultaneous modeling of how different predictors influence 
different count outcomes, we summarized DACTs across the atlas time range, allowing us to visualize the cell-
type specific effects of each perturbation across the whole time series at once (Figure S1E). Hierarchical 
clustering of these fold changes resulted in extensive phenocopying amongst crispants for mesoderm lineage 
factors (cdx4, cdx1a, tbxta, tbx16, tbx16l, msgn1, wnt3a, wnt8a, noto, smo), neural crest lineages (foxd3, 
tfap2a), and two clusters of central nervous system lineage factors (1: egr2b, epha4a, hoxb1a, mafba, zc4h2; 
and 2: phox2a, foxi1, hgfa, met).  
 
We next tested the hypothesis that correlations between cell types’ proportions during embryonic development 
reflect their underlying lineage relationships. Running Hooke on 107 wild-type zebrafish embryos from 18 to 72 
hpf showed that cell types tend to be positively correlated with cell types present in the same time window, 
reflecting their synchronous development, and negatively correlated with cell types present at much later time 
windows (Figure 2D). The latter observation is consistent with early progenitors ultimately giving rise to 
differentiated tissues. However, early cell types might be anti-correlated with ones that develop from unrelated 
lineages, so we next examined links within and across tissues in a Hooke model fit on embryos lacking tbx16 
and msgn1. We fit the model to both tbx16-msgn1 crispants and paired non-targeting controls in a manner 
designed to subtract the changes over time shared by both genotypes but capture any differences between 
genotypes in the correlation structure. This model revealed strong links within tissues and much weaker 
correlation structure between different tissues (Figure 2E). Moreover, links between co-varying cell types were 
especially pronounced in tissues involved in the tbx16-msgn1 phenotype and often reflected lineage 
relationships. For example, paraxial mesoderm (tbx16+) cells were inversely proportional to mature fast 
muscle (Figure 2F). In contrast, states derived from the same progenitor (e.g. distinct subsets of mature slow 
muscle) tended to be positively correlated (Figure 2F). These analyses support our hypothesis that the 
correlation structure in cell proportions of the developing embryo reflects lineage relationships between them. 
Furthermore, the patterns of partial correlation structure between cell types can be used to infer how cell types 
co-vary in their abundances over time.  
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Figure 2. Hooke applied to atlas scale perturbation experiments. A) Schematic of the overall analysis 
workflow. B) Kinetic curves of wild type fast muscle cell types across multiple experimental batches. The curve 
plotted is for Expt 3. Points are conditionally predicted per-model embryo estimates (λi) colored by experiment. 
C) Kinetic plots comparing control to tbx16-msgn1 in a subset of muscle cell types. The dashed-curve is wild 
type and the solid curves is the tbx16-msgn1. Points are conditionally predicted per-model embryo estimates 
(λi) colored by wild type or tbx16-msgn1. * Indicates significance q < 0.01 for a given timepoint comparison 
between control and tbx16-msgn1. D) Partial correlations between wild-type cell types sorted by time of peak 
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abundance. E) Partial correlations between control and tbx16-msgn1 cell types after accounting for timepoint. 
The axis is sorted by time within time at peak wild type abundance within projection group. F) Zoom in of 
muscle and skeletal muscle tbx16-msgn1 partial correlations. FCM, fast-committed myocyte; SCM, slow-
committed myocyte. 

Differential analysis of mutant embryos defines the genetic requirements of embryonic cell types 

In constructing ZSCAPE, our goal was to define how cell types depend on one another and on key genes in 
the genome for their development. To illustrate Hooke’s ability to reveal genetic requirements of cell types, we 
applied it to study the zebrafish pronephros. The pronephros, or the embryonic kidney, is composed of two 
nephrons running in parallel along the anterior-posterior axis of the embryo and is responsible for the removal 
of metabolic waste29. At the 28 somite (23 hpf) stage, it is segmented into nine distinct morphological and 
functional parts, each responsible for a specific function. In our reference and perturbation datasets, we 
captured 32,840 pronephros cells (approximately 15 cells/embryo). Canonical gene markers were used to 
annotate the podocytes (wt1a, wt1b, nphs1, nphs2), multiciliated cells (odf3b, jag2b, dzip11), proximal straight 
tubule (trpm7, slc13a1), early distal tubule (slc12a1), late distal tubule (clcnk, mecom, slc12a3, pppr1b), 
proximal convoluted (slc4a4a, slc4a2a, slc26a2, slc20a1a, pdzk1, slc20a1a) and corpuscles of Stannius 
(stc1l). In addition to these 7 segments, we also identified a population of renal progenitor cell types (Figure 
3A). 
 
How genes and signals control the development of each of these important segments is still not fully 
understood. We sought to explore the requirements of pronephric cell types using Hooke. To test whether 
subsets of pronephric cells require any of the genes we previously perturbed, we fit a Hooke model across all 
the crispants using genotype and time as covariates in the model. This analysis revealed significant changes in 
distinct pronephric cells of several crispants, including smo, noto, and tbx16 (Figure 3B,C).  
 
One key feature we observed across genotypes was the differential loss of late podocytes, which play an 
important role in the glomerular blood filtration barrier30. A deficiency in tbx16 has been previously associated 
with a reduction in podocytes and proximal tubule segments31. The loss of the paraxial mesoderm in tbx16 
mutants has been shown to disrupt the expression of a retinoic acid (RA) synthesis gene, suggesting that 
paraxial mesoderm is a key source of RA for nephron patterning32. However, other signaling pathways may be 
involved in the effects observed in the smo and noto crispants, which have not been previously described to 
have a depletion of podocytes. Smo is the receptor for Sonic hedgehog (Shh) signaling whereas zebrafish noto 
mutants and crispants lack a notochord33,19. Importantly, the notochord serves as a midline signaling source of 
Shh that directs the patterning of surrounding tissues34. Since noto and smo genes are not expressed in the 
pronephric cell types (Figure 3D), this suggests a cell-nonautonomous effect of these genes on the 
pronephros33,35.  
 
We hypothesized that Shh signaling plays an important role in podocyte development, as the pronephros is 
also located in the midline of the zebrafish embryo, adjacent to the notochord. To test this hypothesis, we 
examined the data from Barkan et al. (see related manuscript file) in which we applied sci-Plex to hundreds of 
embryos exposed to signaling pathway inhibitors during organogenesis (BMP, FGF, Notch, RA, Shh, TGFβ, 
and Wnt)24. These embryos were collected at overlapping timepoints with those examined in Saunders et al. 
(2023), with 8 embryos per timepoint and matched controls. We fit a Hooke model to the Barkan et al. (see 
related manuscript file) dataset across the entire embryo using chemical inhibitor and timepoint as covariates. 
For this analysis, we specifically focused on the differential abundance patterns in the pronephros. We 
compared the chemically inhibited effect sizes to those with genetic perturbations at 36 hpf. Shh-inhibited 
embryos (cyclopamine) had similar abundance changes to the smo and noto embryos, including a 97% 
reduction in podocytes (Figure 3C,E). Conversely, in Wnt-inhibited (Wnt-59) embryos, the podocytes had a 4-
fold increase in abundance, suggesting Wnt is a negative regulator of podocyte development. We performed a 
series of whole-mount in situ hybridization (WISH) experiments to validate these changes in podocyte 
abundance using the previously identified markers nphs1 and nphs236, and observed a lack of podocytes when 
Shh was inhibited and an increase in podocyte expression when Wnt was inhibited (Figure 3F,G). We also 
tested a Wnt-activator (BIO) and saw an absence of podocytes supporting the idea that Wnt is a negative 
regulator of podocyte development (Figure 3G). Based on these concordant results, we propose a model of 
Shh positive regulation and Wnt negative regulation of the podocytes (Figure 3H).  
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Figure 3. Regulation of podocyte development by Shh and Wnt signaling. A) UMAP showing developing 
kidney cell types along with their arrangement in the pronephros. Renal progenitor cells are colored gray. B) 
Hierarchical clustered heatmap of Hooke reported cell type abundance changes in pronephros clusters and 
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their corresponding cell types at 36 hpf. Boxes indicate significant changes (q < 0.05). LP, late podocyte; EP, 
early podocyte, MCC, multi-ciliated cells; PCT, proximal convoluted tubule; PST, proximal straight tubule; DL, 
distal late; DE, distal early; CS, corpus of stannius. C) UMAP colored by changes in each cell type’s 
abundance in smo and noto crispants at 36 hpf as estimated by Hooke. D) Expression of markers in the 
Kidney UMAP colored by log10 of gene expression of noto and smo. E) UMAP colored by changes in each cell 
type’s abundance in Shh-inhibited (Shh-i) and Wnt-inhibited (Wnt-i) embryos at 36 hpf. Shh-i added at 6 hpf 
(shield stage) and Wnt-i added at 13 hpf (8-somites stage). F) Expression of markers in the Kidney UMAP 
colored by log10 of gene expression of nphs1 and nhps2. G) WISH of control, Shh inhibited, Wnt inhibited, and 
Wnt-activated (Wnt-a) treated embryos stained for podocyte-specific genes (nphs1, nphs2) at 48 hpf. Shh-i 
added at 6 hpf (shield stage) and Wnt-i added at 13 hpf (8-somites stage). H) Diagram depicting our proposed 
model of signaling pathway regulation of the podocytes. 

Covariation across individuals resolves molecular transitions in the developing embryo 

Although our initial analysis of ZSCAPE detected many cell types that were lost in each crispant19, the lack of a 
high-resolution map of the lineage relationships between these cell types precluded us from clearly delineating 
which cell types directly required each perturbed gene. Single-cell “trajectory analysis”, in which 
transcriptionally similar cells are assumed or inferred to be developmentally related, is often used to study how 
cells regulate and are regulated by genes as they develop. However, such inference can mistakenly link cell 
types that are transcriptionally similar but not lineally related37. We reasoned that Hooke’s models of how cell 
types co-vary with one another across time and in response to perturbations could be used to generate 
accurate maps of lineage relationships between cell types that could be used to better interpret perturbations. 
 
To explore this idea and better understand how cell types arise from other cell types during embryogenesis, 
and how they might share genetic requirements, we next developed “Platt”, an algorithm that uses Hooke’s cell 
abundance models to infer cell state transitions even in very complex tissues or hard to resolve single-cell 
trajectories (Figure 4A and Methods). Platt is named for Julia Platt, who first suggested the neural crest origins 
of the skull 38. Platt first subclusters cells into "microstates" and fits a Hooke model on wild type cells over time, 
estimating changes in cell proportions and recovering a partial correlation network among microstates. Next, 
Platt initializes a “pathfinding graph” over which cells could plausibly travel as they transition between 
microstates. The pathfinding graph is constructed by linking microstates that are both transcriptionally similar 
and deemed partially correlated by Hooke. Then, Platt orients this graph so that cells travel over the shortest 
paths from microstates common in early embryos towards microstates common in later embryos. Next, Platt 
considers any available perturbation experiments, reasoning that a perturbation that depletes cells in an 
“ancestral” microstate should also deplete cells in any “descendant” microstates. For each putative transition, 
Platt checks whether the two states were concordantly gained or lost in at least one genetic perturbation, 
assigning weights and labels to each edge based on this support. Finally, the graph is pruned, eliminating any 
weakly-supported edges needed to ensure that it is acyclic. 
 
As a proof of principle, we applied Platt to pronephros cells from wild-type and genetically perturbed zebrafish 
embryos in ZSCAPE. Despite their specialized functional roles, pronephric cells express many genes in 
common, and accordingly do not develop along a simple linear or branched pseudotime trajectory (Figure 
4B,C). The resulting state graph linked microstates present within each spatial segment of the pronephros of 
early embryos to microstates present in the corresponding spatial segment of later embryos (Figure 4D). 
Moreover, Platt judged the links within the segments as supported by perturbations, whereas it reported links 
between segments as lacking direct perturbational evidence. For example, perturbations Platt assessed to 
support links between microstates included tbx16-msgn1 and tbx16-tbx16l. Tbx16 is likely required by the 
pronephros via retinoic acid signaling31. Taken together, these analyses demonstrate that Hooke and Platt can 
work together to resolve complex cellular trajectories on the basis of shared genetic requirements in embryonic 
tissues.  
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Figure 4. Platt builds cell state transition graphs using time series and perturbation data.  
A) A cartoon UMAP and schematic of the Platt cell state transition graph assembler algorithm. PAGA: Partition-
based graph abstraction. B) Sub-UMAP of the kidney colored by timepoint. C) Sub-UMAP of the kidney 
colored by spatial segment. D) A Platt-derived cell state transition graph built using wild type and mutant data. 
The smaller boxes denote clusters. Larger colored boxes denote cell types and match colors in Figure 3A. 
Cluster nodes are labeled by genetic requirements (subset to the perturbations in Figure 3) and colored by 
their direct (blue) or indirect (yellow) classification.  
 
A whole-embryo map of molecular state transitions during zebrafish organogenesis  
 
Having established algorithms for inferring lineage relationships between cell types based on their shared 
genetic requirements, we next applied Platt to ZSCAPE to construct an embryo-scale map that spanned 
organogenesis in the zebrafish (Figure 5A). Platt linked 153 cell types (48% in the atlas) into the resulting 
state graph, with 173 transitions in total. 110 of the cell types in the reference atlas had at least one direct 
“ancestral cell type” in the graph. Cell types that emerge prior to 18 hpf (the earliest timepoint represented in 
ZSCAPE) were frequently found at component roots, and cell types that emerge later found at the leaves 
(Figure S3A). Cell types with neither ancestors nor descendants tended to be much lower in proportion and 
were commonly annotated as potential doublets based on markers (Figure S3B). However, Platt did 
successfully incorporate very rare or specialized cell types, such as pectoral fin cleithrum (~2-3 cells recovered 
per embryo).  
 
Platt’s map of cell state transitions between zebrafish embryonic cell types was rich with support from 
literature; 84.3% of links were observed or inferred in previous studies (Figure 5B and Table S3). However, 
because cell type definitions and boundaries are not consistent across past studies, we sought to 
systematically assess the quality of the graph. First, we manually matched each ZSCAPE cell to corresponding 
types in the ZFIN Cell Ontology, which enabled us to look up all genes known to be required for that cell type 
according to the Monarch Initiative39 (Methods). Next, we asked whether two cell types linked by Platt both 
shared a common genetic requirement from Monarch. Of 173 transitions in Platt’s graph, 87% were supported 
by at least one shared genetic requirement, with many edges supported by many genes (Figure S3C,D). We 
compared the Monarch support of our Platt graph edges to 100 randomly generated graphs (Figure 5C and 
Figure S3C). Thus, while the Platt state graph is not fully connected, the edges that are present are well-
supported by prior studies and highly consistent with the consensus view of how cell types develop from one 
another in the zebrafish embryo. 
 
We next explored how our own perturbations supported each transition as a means of understanding how our 
choices of target genes illuminated transitions in different tissues. Scoring each edge for support from each 
ZSCAPE perturbation revealed 23 edges (14%) were supported by at least two independent perturbations. 
Many supported edges, but not all, were concentrated in skeletal muscle, the central nervous system (CNS), 
and the neural crest derivatives, consistent with the fact that Saunders et al., 2023 targeted many transcription 
factors important in these lineages (Figure 5D). A further 32 edges (19%) were supported by just one 
perturbation, while 40 edges (24%) were supported indirectly, leaving the remaining 70 edges (42%) consistent 
with time but otherwise without support from perturbations on each side of the corresponding state transitions 
(Figure S3E). Upstream of these direct cell losses, 12% have a significantly enriched ancestor, likely 
corresponding to a block in that cell type’s further development.  
 
We next examined the genes that change as cells transition over the graph by performing systematic 
differential gene expression analysis over the map. We iterated over the map and, for each node, looked for 
several patterns of differential expression (Figure S4A). For example, “terminal selector” and “multilineage 
priming (MLP)” genes might activate specific fates, genes expressed in progenitors only might be required for 
maintaining the progenitor states, and genes excluded from certain fates might repress that fate37,40–42. Of the 
2350 classed as transcription factors by CIS-BP43, 1739 were expressed in a manner suggestive of such fate-
determining roles in one or more of 92 cell types. Terminal selectors included mitfa, phox2a, and wt1a in 
melanophores, epibranchial ganglion, and podocyte cells, respectively (Figure S4B-D). The MLP effect of 
pax3a was observed in paraxial mesoderm (pax3a, pax7-) progenitors as they commit to either head and neck 
mesoderm or fast muscle fates, consistent with its known role in governing these decisions44 (Figure S4E). We 
next asked which of the genes were known to be important for the cell types in which we detected their 
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regulation. Of the 1739 transcription factors, 32% were directly required by at least one cell type as reported in 
the Monarch Initiative Knowledge Graph39, ZFIN, or Gene Ontology Biological Process databases (Methods). 
Furthermore, 40% of cell types had a significant overlap between Platt-determined requirements and Monarch-
determined requirements (Figure S4F,G). These requirements were broadly distributed over the Platt state 
graph, demonstrating that dynamically expressed transcription factors are often required by the cell types that 
regulate them.  
 
We reasoned that perturbations that disrupt the differentiation of some cell types might also disrupt gene 
regulation in their progenitor cell types, so we next asked whether cell type losses were “anticipated” by 
transcriptional phenotypes in the upstream transcriptional states. We performed a differential expression 
analysis comparing cells from perturbed embryos to the same cell type from control embryos (Methods). 
Across all 24 genotypes, we uncovered 21,119 differentially expressed genes (DEGs). However, DEGs were 
detected in many cell types that were not significant DACTs in the corresponding perturbation (Figure S4H). In 
fact, few DEGs were detected in cell types substantially lost in a perturbation, likely reflecting that, without 
adequate cell sampling in both conditions, power for transcriptional comparisons is limited. However, DEGs 
were commonly detected in cell states upstream of DACTs. We then asked which genes are “deviantly 
expressed” (DvEG) in each perturbation, defined as genes that are under- or overexpressed in perturbed cells 
undergoing a transition relative to controls (Figure S4I). For example, tbx16-msgn1 crispants fail to generate 
skeletal muscle properly and pax3a, a key regulator of myogenesis, was deviantly expressed in myogenic 
progenitors (Figure 5E-H). In total, we detected 12,099 DvEGs across the ZSCAPE perturbation collection, 
including in cell types present at normal wild type abundance. Of these DvEGs, 795 (7%) were themselves 
transcription factors, and 1297 (11%) were known genetic requirements of the cell types in which they were 
deviantly expressed, and 2,169 genes (18%) had phenotypes affecting the associated tissue. Together, these 
analyses underscore the utility of an embryo-scale state graph for interpreting the transcriptional and cellular 
effects of perturbations and its potential for nominating future targets.  
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Figure 5. A whole-embryo map of molecular state transitions. A) State transition graphs for each assembly 
group with zoom-in graphs for pectoral fin, muscle, and neural crest and pigment. B) The count of literature 
support in each tissue graph. “Consistent with literature” indicates the Platt graph cell type resolution is finer 
than what is reported. C) The cumulative sum of edges supported by Monarch genetic requirements in the 
Platt graph compared to 100 randomized graphs. D) The count of direct or indirect support from perturbations 
in each tissue graph from Saunders et al., 2023. E) A top subsection of the muscle graph labeled by cell type. 
F) The muscle Platt graph colored by log cell abundance fold change (tbx16-msgn1/control) as estimated by 
Hooke (*: p < 0.05, **: p < 0.01, ***: p < 0.001). G) Platt graph colored by pax3a wild type expression. H) Platt 
graph colored by log fold change (tbx16-msgn1/control) of pax3a in the tbx16-msgn1 mutant (*: p < 0.05, **: p 
< 0.01, ***: p < 0.001).  

Graph-assisted identification of novel genetic requirements 

To expand Platt’s map and recruit unlinked cell types or transitions with scarce support, we next sought to use 
the map to predict new genetic requirements that could be targeted in perturbations. Amongst the genes Platt 
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associated with many state transitions and fate decisions was lmx1bb (Figure S4J), which has been previously 
implicated in the development of the kidney, eye, limb, ear, and midbrain-hindbrain boundary45,46-47. We 
generated G0 knockouts (crispants) targeting lmx1bb and its paralog, lmx1ba48, using CRISPR-Cas9 
mutagenesis (∆lmx1b, Methods). WISH confirmed the loss of podocytes and the midbrain-boundary, 
recapitulating previous studies (Figure S5A,B). To comprehensively define the molecular phenotype of 
∆lmx1b, we collected eight replicates of ∆lmx1b and paired injection controls at six timepoints across 
organogenesis: 18, 24, 36, 48, 60, and 72 hpf (Figure 6A and Figure S5E). We then used sci-Plex to profile 
these cells, where embryo-specific barcodes were used to label each sample's perturbation and timepoint of 
collection. In total, 572,958 cells were collected from 168 embryos, with an average of ~3,400 cells captured 
per embryo and ~660 UMIs per cell (Figure S5C,D). We projected the data onto our reference atlas and 
transferred cell-type labels using a nearest-neighbor approach (Methods).  
  
To phenotype the ∆lmx1b crispant, we first fit a Hooke model using genotype and time as covariates. Hooke 
detected 109 significant DACTs across the embryo over the six timepoints (q < 0.05) (Figure 6B and Figure 
S5F). Some cell types with detectable expression of lmx1b were unaffected or even significantly more 
abundant in crispants than controls, while other cell types with undetectable lmx1b expression were 
significantly differentially abundant in the crispants (Figure 6C). As expected, Hooke detected significant 
losses in podocytes, the semicircular canal (ear), the midbrain, and the hindbrain (Figure 6D). We also 
observed losses in cell types not previously reported to depend on lmx1b, such as the late notochord sheath 
and an unknown tenocyte population (Figure 6D). We reasoned that the indirect effects of disrupting lmx1b, in 
which descendants of cell types that express and require the genes were also lost, might be frustrating our 
efforts to locate the cell types that directly require lmx1b.  
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Figure 6. Characterizing the ∆lmx1b crispant. A) A schematic of the experimental design. B) Global UMAP 
colored by changes in each cell type’s abundance in the ∆lmx1b crispants at each cell type’s peak abundance 
as estimated by Hooke (q < 0.05). C) Scatterplot comparing the mean expression of lmx1b+ cells compared to 
the relative abundance of ∆lmx1b vs control embryos in each cell type. D) Boxplots of normalized cell counts 
from wild type vs. ∆lmx1b crispants from select cell types colored by timepoint. MHB: midbrain-hindbrain 
boundary. 

Platt-guided differential expression analysis locates putative genetic requirements  

To deconvolve indirect and direct effects of disrupting lmx1b in the zebrafish embryo, we used Platt to 
scrutinize the cell abundance phenotype of lmx1b over our embryo-scale map of cell state transitions. We 
focused on DACTs in lineages where lmx1b was identified as a selectively activated gene and resulted in a 
significant abundance change (Figure 7A-C). Painting each graph by abundance changes at the timepoint of 
each cell type’s peak abundance in the wild type pinpointed where losses begin and how they propagate 
through subsequent transitions (Figure 7B). Notably, cell types that specifically expressed lmx1b in the wild 
type were lost in the kidney (podocytes), notochord (vacuolated cells), and head mesenchyme (tenocytes 
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(tnmd+, cdon+)), anterior segment mesenchyme (col9a2+) and anterior segment mesenchyme (scin1a+)) 
(Figure 7B,C). The notochord sheath cells were also lost, even though they did not normally express lmx1b at 
high levels (Figure 7B), potentially reflecting a non-autonomous requirement for lmx1b. Moreover, ancestors of 
these depleted cell types such as the renal progenitors and periocular mesenchyme were significantly 
enriched, consistent with their failure to progress into the podocyte or anterior segment mesenchyme fates, 
respectively. Visualizing and interpreting the differential abundance analysis of the ∆lmx1b crispants in the 
context of the Platt state graphs thus provided a potential explanation for why some lmx1b-expressing cell 
types were lost as others were gained. In total, analyzing ∆lmx1b crispants lent experimental evidence to four 
state transitions, two of which were previously unsupported by any previous ZSCAPE perturbation (Figure S6), 
demonstrating that Platt can locate novel genetic requirements and use them to reinforce its own maps of how 
cell type depend on one another.  
 
To further investigate the mechanisms underlying cell types that require lmx1b, we explored the transcriptional 
responses of each cell type to the ∆lmx1b crispant. Pairwise testing between pseudo-bulked control and 
∆lmx1b crispant cells revealed 1,748 unique DEGs across all cell types and 12,099 DvEGs across all cell types 
in the embryo. These included numerous components of the extracellular matrix (ECM), consistent with a 
previous study in mice that reported ECM components as direct targets of lmx1b49. For example, DvEGs 
included col2a1a (Figure S7A,B), which was underexpressed along the transitions from notochord progenitor 
cells to sheath cells and from otic support cells to the semicircular canal, where lmx1b is known to promote the 
expression of other ECM components45. Two teneurin genes, highly conserved transmembrane glycoproteins50 
and which have been documented to interact and modulate components of the ECM and alter the 
determinants of cell adhesion and migration51, were also deviantly expressed, failing to reach the levels 
observed in controls. The teneurins tenm3 and tenm4 were underexpressed in tenocytes and the anterior 
segment mesenchyme (col9a2+) respectively. Tenm3 was found to be underexpressed in tenocytes, which are 
cells important for building up the ECM and synthesizing and maintaining tendons52. Tenm4, which is important 
in the development of neural crest-derived tissues, was underexpressed in anterior segment mesenchyme 
(col9a2+) and periocular mesenchyme cells, a population of neural crest-derived cells that contribute to the 
development of ocular structures and play an important role in developing the connective tissue around the 
eye46. Importantly, we did not detect changes in other transcription factors known to regulate the expression of 
ECM components in these transitions, arguing that lmx1b directly modulates cell-type specific connective 
tissue programs. 
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Figure 7. Platt graphs help organize changes in abundance and gene expression. A) Platt-derived state 
graphs annotated by cell type. Colors represent cell types: RP, renal progenitors; PST, proximal straight 
tubule; P, podocyte; PCT, proximal convoluted tubule; EDT, early distal tubule; LDT, late distal tubule; MCCs, 
multiciliated cells; BP, bud progenitor; BM, bud mesoderm; C, condensate; DM, distal mesenchyme; Cl, 
cleithrum; T-tenocyte; ENP, early notochord progenitor; NP, notochord progenitor; EVN, early vacuolated 
notochord; LVN, late vacuolated notochord; ENS, early notochord sheath; LNS, late notochord sheath; NC, 
neural crest, periocular mesenchyme-fated; PM, periocular mesenchyme; ASM 1, anterior segment 
mesenchyme (col9a2+); ASM 2, anterior segment mesenchyme (scinla+); MT, mesenchyme, tenocyte-like 
(tnmd+); T, unknown (tenocyte, tnmd+, cdon+) B) Platt-derived state graphs colored by expression of lmx1b. 
C) Platt-derived state graphs are colored by significant log fold changes in the abundance of each cell type (*: 
p < 0.05, **: p < 0.01, ***: p < 0.001). D) Platt-derived state graphs colored by the fraction of significant (q < 
0.05) DvEGs in each cell type. 

Discussion 
 
Analyzing genetic perturbation experiments at single-cell resolution and whole-embryo scale is challenging: 
any of hundreds of cell types might be impacted, and many effects will be indirect and will manifest at varying 
scales from the molecular to the anatomic. Here, we describe Hooke and Platt, software tools that work 
together to statistically model how perturbations impact cells and genes throughout complex tissues or even 
whole embryos over time. Through differential analysis of many genetic perturbations, the tools organize cell 
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types in an atlas into graphs that describe how cells transit through distinct molecular states. State graphs 
guide differential expression analysis to identify genes that change as cells differentiate and make fate 
decisions, helping to prioritize potential perturbation experiments that test whether putative regulatory genes 
are required for each cell type. When used to interpret perturbation experiments, state graphs help localize the 
effects of genetic and chemical perturbations within the lineage, distinguishing the most ancestral cell types 
impacted from their indirectly affected descendants. 
 
Hooke uses Poisson log-normal network models to describe how cell proportions co-vary, how they change 
over time, and how they are impacted by genetic, chemical, or environmental perturbations. Hooke models 
track the kinetics of each cell type’s abundance, enabling users to pinpoint when a perturbation interrupts, 
delays, or blocks each cell type’s development. Hooke accurately detects differences in cell proportion across 
a wide range of experimental designs, accounts for batch effects and performs contrasts over time, and 
accommodates complex experiments with multiple perturbations. We also developed Platt, which interprets 
Hooke models from one or more perturbation experiments to assemble a map of how cell types depend on one 
another in the lineage. Platt automatically interprets Hooke’s statistical models to track the emergence, 
expansion, and extinction of transient cell states in a developing embryo and link states through which cells 
directly transition. Platt also leverages perturbation experiments that interrupt or block state transitions to 
discriminate between genuine developmental transitions and artifactual links between transcriptional similar 
cell states. Together, these tools can be used to identify links between healthy and pathological disease states 
and also define the lineage relationships and genetic requirements in development. 
 
We validated these two tools through an extensive reanalysis of our atlas of perturbed zebrafish embryos, 
ZSCAPE. Using Platt, we constructed a state transition graph for the developing zebrafish embryo linking cell 
types to their direct ancestral states, enabling us to define the transcriptional dynamics of numerous fate 
decisions. The overwhelming majority of cell state transitions were supported by literature or prior knowledge 
databases and the gene regulation that occurred as these cell types transitioned through states was strongly 
enriched for genes known to be critical for their development. The state graph also enabled us to 
systematically catalog the transcription factors regulated at each fate decision, which in turn nominated genetic 
requirements for each cell type. Both of these analyses were impossible or impractical to perform when we 
initially collected the ZSCAPE dataset because we lacked scalable, accurate software for doing so.  
 
To demonstrate that our new map of state transitions in the developing embryo is useful for locating the critical 
genes for specific cell fate decisions, we performed deep single-cell RNA-seq phenotyping on embryos lacking 
lmx1b, a transcription factor frequently upregulated in cell types that contribute to embryonic connective tissue. 
Differential analysis of the crispants with Hooke and Platt detected numerous cell types lost or blocked in their 
development, recapitulating expected effects on podocytes,53 the midbrain-hindbrain boundary (MHB),47 
periocular mesenchyme,46 and semicircular canal.45 We also observed losses in other cell types that 
expressed lmx1b that have not been previously reported, including both the vacuolated cells and the sheath 
cells of the notochord, as well as a population of tenocyte-like cells originating from the head mesenchyme. 
Many of the affected cell types contribute to connective tissues in the embryo and accordingly upregulate 
collagens as part of their development. Collagens and teneurins were amongst the genes that were 
underexpressed in these and other cell types in ∆lmx1b crispants, consistent with the idea that lmx1b is 
important for regulating extracellular matrix production or organization across diverse connective tissue cell 
types. The lmx1b experiment not only demonstrates the potential of Hooke and Platt for finding new genetic 
requirements, but also for dissecting the regulators of gene expression programs that are shared or 
repurposed by diverse cell types. 
 
Together, Hooke and Platt constitute powerful new methods in the toolkit for mapping genetic programs that 
control development and understand how they go awry in disease. They enable the use of controlled 
perturbations in hypothesis-driven single-cell sequencing experiments to systematically define how cell types 
depend on one another and on genes. Such experiments are increasingly commonplace, and without scalable 
tools for interpreting them, data analysis will be ever more rate limiting. Modeling the effects of a perturbation 
on the proportions and transcriptomes of all cell types in the embryo is challenging because it requires 
considering effects on all cell types and genes at once. However, as we show here and in Barkan et al. (see 
related manuscript file), phenotyping at whole-embryo scale and single-cell resolution helps separate primary 
effects from more downstream consequences, isolating the cell types and gene programs most immediately 
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impacted by a genetic or chemical perturbation. Jointly analyzing cell abundance and transcriptional 
phenotypes over a state graph often reveals dysregulation in key genes in progenitor cell types that anticipates 
losses in their descendant fates, which in turn clarifies the mechanisms by which perturbations lead to 
phenotypes. While it is challenging to extract mechanistic insights from the extraordinarily complex molecular 
and cellular effects that embryo-scale single-cell experiments capture, the new computational framework 
contributed by Hooke and Platt helps locate the cell types and transcriptional changes that are most directly 
affected. More broadly, Hooke and Platt introduce analytic and statistical strategies that become available only 
in well-controlled, well-powered “atlas-scale” single-cell experiments. We anticipate that new tools will build on 
or elaborate these strategies in innovative ways to leverage the tremendous potential for embryo-scale single-
cell perturbation experiments to reveal parts of the genetic program of vertebrate development.  
 
Methods 
 
Benchmarking simulations 
 
Our ability to detect cell proportion changes between different contrasts is a function of the following: 
abundance of a given cell type, the number of replicates, and the effect size of the perturbation.  
To evaluate power, we carried out a simulation analysis:  

1. We selected 140 cell types, their abundances ranging from 1 to 20% from a 24 hpf embryo. The 
proportions of these cell types served as the basis for our simulations. 

2. We simulated groups of wild type samples with 5, 10, 15, … 50 replicates in each group. For each 
replicate, the simulated number of cells of each cell type was calculated as the product of: (a) the cell-
type proportions, simulated by fitting a Dirichlet model based on the real proportions from step 1; and 
(b) the total number of cells recovered for that replicate, simulated on the basis of the mean (n = 1,000) 
and standard deviation of the cell numbers across replicates in the real dataset. 

3. We simulated ten groups of ‘mutant’ samples by repeating the above step except adding shifts to the 
numbers of cells within each cell type. The shifting scales were based on different effect sizes (0.25, 
0.5, 0.75). For instance, effect size =  0.25 represents a 25% reduction in the number of cells. 

4. We fit a Hooke model to test whether the cell-type proportions significantly changed between simulated 
‘wild type’ and ‘mutant’ samples. We then checked the results stratified by cell type (with different 
abundances), the number of replicates, and the effect size. 

 
Comparison with other tools 
 
Hooke was compared to Propeller13 (version 0.99.7) and to the method for differential described in Saunders et 
al, 2023. Briefly, that method fits a generalized linear model with a Beta Binomial response to each cell type’s 
normalized counts across embryos. Wild type and mutant embryos were simulated as described above. Cell 
types were mutated in 4 different proportions at a range of effect sizes (.25, 0.5, 0.75) and embryo sizes (250, 
500, 1000). These simulations were generated using 100 seeds for each condition to calculate a TPR and 
FPR. 
 
scRNA-seq analysis  
 
After RNA and hash-quality filtering, data were processed using the Monocle3 (develop branch, v.1.3.1) 
workflow using defaults except where specified: estimate_size_factors(), preprocess_cds() with 100 principal 
components (using all genes) for whole-embryo and 50 principal components for subsets, 
align_cds(residual_model_formula_str = “~log10(n.umi)”), and reduce_dimension(max_components = 3, 
preprocess_method = ‘Aligned’).  
 
Hierarchical annotation and subclustering 
 
To build maps where cluster annotations corresponded broadly to cell types, the global reference dataset was 
split into 30 partitions, based on previous tissue annotations. Each partition was re-processed, embedded in 
three dimensions with UMAP, and subclustered. Clusters were then assigned annotations based on the 
expression of marker genes (using the top_markers() function) and literature by using the ZFIN database 
(zfin.org). Each cluster was assigned on ‘cell_type’ annotation. These subtype annotations were manually 
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merged into ‘cell_type_broad’ classifications based on cluster proximity or cell-type functional groupings. 
Annotations were further merged into ‘tissue’ groups based on whether broad cell types together composed a 
broader tissue.  
 
Query dataset projection and label transfer 
 
Projection and label transfer were performed similarly to Saunders et al., 2023.  
The PCA rotation matrix, batch-correction linear model, and UMAP transformation were computed and saved 
during the processing of the reference dataset. This computation was done on two levels: first, with all 
combined reference cells (global reference space), and second, in each of the thirty subgroups (subreference 
space). One of the projection group labels (e.g. mesoderm, skeletal muscle, hindbrain) was transferred using 
the majority label of its annotated nearest neighbors (k = 10). Nearest neighbors were calculated using annoy, 
a fast, approximate nearest-neighbor algorithm (https://github.com/spotify/annoy, v.0.0.20). The query dataset 
was split into 30 subgroups based on these assigned projection group labels. Each query subgroup was 
projected into the subreference spaces using the corresponding saved PCA, batch correction, and UMAP 
transformation models using the same projection procedure. Cell type labels were transferred in this subspace 
using the majority vote of reference neighbors (k = 10). Cells without neighbors within a preset distance cutoff 
(min_nn_dist = 1) were removed. Cells that projected onto doublet-labeled clusters were also excluded from 
the analysis.  
 
Differential cell abundance testing 
 
After cell type annotation, counts per cell type were summarized per embryo to generate an embryo × cell type 
matrix. The embryo × cell type matrix was stored as a Hooke cell_count_set object. Counts were compared 
across genotypes and their paired controls. In a Hooke cell_count_model, two PLN models (v1.2.0) are fit. We 
refer to these as the full and reduced models. The full model is a PLNmodel fit using genotype, timepoint, and 
batch as fixed effect covariates and offset as a random effect covariate and are modeled as follows:  
 

latent layer: 𝑍!~𝒩(𝜇! , ∑)  
observation layer: 𝑌!"|𝑍!"	~	𝒫(𝑒𝑥𝑝(𝑜!" + 𝑍!"	))  

 
Where Yij is the observed abundance of cell type j in embryo i and Z represents the true latent abundances. 
The μi parameter corresponds to the fixed effects, and can be decomposed into μi = xi

T θj where xi
T is a vector 

of covariates for each embryo i and θj is a vector of regression coefficients associated to these covariates for 
cell type j. The latent covariance matrix Σ describes the underlying structure of dependence. The fixed quantity 
oij is the offset for cell type j in embryo i, which accounts for expected differences in observed counts due to 
sampling. For the offset, we calculate an embryo ‘size factor’ by dividing the total number of cells recovered 
from an embryo by the geometric mean of total cell counts across all embryos.  
 
If the model is fit on wild type only data, the models are fit on timepoint using a natural spline, with an 
experimental batch term if there are more than two experiments:  
  
 Y ~ 1 + ns(timepoint, knots) + expt 
 
If the model is fit on both wild type and perturbed data, the models are fit using an interaction term between 
genotype and time with natural splines. A batch term is included if there are more than two experimental 
batches. Knots in the spline were calculated based on each genotype’s specific collection points.  
 

Y ~ ns(timepoint, knots) + ns(timepoint, knots):knockout + knockout + expt 
 
The reduced model is a PLN network model fit and includes nuisance terms such as batch as covariates. It is 
modeled as follows:  
 

latent layer: 𝑍!~𝒩(𝑚! , Ω$%) with	Ω	sparse  
observation layer: 𝑌!"|𝑍!"	~	𝒫(𝑒𝑥𝑝(𝑜!" + 𝑍!"	)) 
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The variance matrix, Σ, captures the correlations between pairs of cell types, while the partial correlations are 
encoded by its inverse: the precision matrix Ω = Σ-1. The precision matrix is assumed to be sparse and a 
constraint is imposed on coefficients of Ω.  
 
Hooke regularizes the correlations it learns through a penalty scheme that favors transcriptionally similar cell 
types (e.g. progenitors and their differentiated cell types) based on proximity in transcriptomic (UMAP) space. 
Cells are first pseudobulked by cell type and the distance between all cell type pairs is then calculated. This 
resulting distance matrix is contained in a matrix ρ, where dij is the Euclidean distance between cell types i and 
j, and s is a scaling constant (by default s = 2):  
 

ρij = 0.01 + (dij / max(dij)s) 
 
Log abundances are estimated for each condition using the predict() function using the full model, along with 
standard errors. These abundances are then compared to report a delta log abundance value. P-values were 
calculated using a Wald test and multiple testing corrected with Benjamini-Hochberg.  
 
Kinetic modeling 
 
To create the wild type kinetic curves, Hooke models were fit on the wild type data using a natural spline on 
timepoint, with an experimental batch term if there are more than two experiments. Values are then predicted 
for a given time interval, with a step size of 2. The same is done for a model fit on mutant data and their 
corresponding controls, but with perturbation included in the model string. Along with the curves, per-model 
embryo estimates λi (i.e. rate parameters, where λi = exp(Zi)) are conditionally predicted given the PLN model, 
a set of covariates, and the observed normalized cell type counts.  
 
These wild type kinetic curves can additionally be used to estimate the timepoint at which each cell type is at 
its peak abundance in the reference.  
 
Lineage construction 
 
Graphs were constructed on each assembly group, first at the cluster-level and then at the cell-type level. For 
each assembly group, the data is first clustered using Monocle3’s cluster_cells(resolution=1e-3, k=15) to 
define cell states. A Hooke model is then fit on wild type data with timepoint and experimental batch as 
covariates. Using this model, the presence of each cell type in a given time interval is determined. Next, a 
pathfinding graph is initialized over which cells can transition. This starts by computing a partition-based graph 
abstraction (PAGA) graph,54 which represents the connectivity of the UMAP-manifold partitions. Edges with a 
zero partial correlation in the PLN network model are removed from the PAGA graph. Since the initial direction 
of flow is unknown, edges are placed in both directions. Next, paths between pairs of states are considered if 
those states exhibit a reciprocal fold change (one increasing, one decreasing) and have a non-zero partial 
correlation between them. Paths are then scored by fitting a linear model of:  

 time ~ geodesic distance 
 
The shortest path between these nodes that also aligns with the direction of time is retained in the final graph. 
Finally, cycles are removed from the graph, resulting in the wild type-only graph. 

Next, perturbation data is analyzed. Models are fit for each perturbation in its corresponding experimental time 
window, with each perturbation model describing a separate experiment that may eliminate one or more cell 
states. DACTs are considered only if their abundance changes at a timepoint when the corresponding cell type 
is present in the wild type. 

Paths that include a sequence of lost nodes following each perturbation are identified in the pathfinding graph. 
Paths must also align with the flow of time in control cells (by fitting a linear model), at least over the time 
window measured in the corresponding perturbation experiment. The same path may recur in multiple 
perturbation experiments. The level of support for each path is summarized by counting how many edges are 
supported by perturbation-induced losses. This creates the mutant-supported graph built on cell states.  
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This process is repeated after contracting the cluster-level graph to cell-type resolution. The graph construction 
process is repeated on the cell-type, with the contracted graph used as a prior to regularize the partial 
correlation calculations. For perturbations collected at multiple timepoints, the fold changes are summarized as 
a weighted average. Each timepoint’s fold change is weighted by the percentage of the maximum wild-type 
abundance observed at that timepoint. Finally, genetic requirements are calculated where if a cell type is 
significantly lost and its parent remains unchanged the change is labeled as “direct”; otherwise, it is considered 
“indirect.” 

Assessing support for Platt graph state transitions 
 
To more systematically assess the accuracy of the map of the lineage transitions assembled by Platt, we 
scored each edge by the strength of support in our own perturbation data. Directed edges (u, v) from cell state 
u to state v were deemed directly supported by a perturbation when all of the following criteria were true: (1) at 
least one of them expresses the gene(s) targeted in the perturbation; (2) whenever u is a DACT, v is 
significantly reduced; (3) any parent states of u are unaffected. If the first two criteria are true, but the last is not 
owing to changes upstream of u, the edge is scored as indirectly supported by the perturbation.  
 
Aligning cell type labels with previously published ontologies  
 
Each cell type in the atlas was assigned a Cell Ontology identifier (CL id) from ZFIN. If the cell type was at finer 
resolution than listed on ZFIN, the CL id of its “cell type broad” was used (e.g. cranial motor neuron progenitor 
becomes cranial motor neuron). Associated anatomical phenotypes from ZFIN were also mapped to the atlas 
cell types.  
 
Defining genetic requirements of cell types with Monarch 
 
The Monarch Initiative Database, which integrates data about genes and phenotypes across species, was 
referenced to define the set of known genetic requirements for each cell type. First, each cell type’s associated 
CL id was queried in the Monarch database. Then, associated biological process genes and phenotypes were 
collected into a table. This process is repeated for a cell type’s anatomical id. Finally, each gene is then 
categorized as direct (a cell type is lost when the gene is affected, but not its parent) or indirect (a cell type and 
its parent are lost when the gene is affected) using the Platt graph.  
 
Differential gene expression analysis 

Expression values were first aggregated for each embryo across cell types into ‘pseudo-cells.’ Differential gene 
expression across perturbations was computed for every cell type using a Platt method that models each 
gene’s expression in each cell type and treatment condition via a generalized linear regression model (GLM) 
as described previously19,55 using the fit_models function in Monocle3 (v1.3.1)56.  

To prevent inflated effect estimates, such as those from low-expression genes in rare cell types, an empirical 
Bayes shrinkage approach, ashr57, was applied to regularize effect estimates. Log fold changes for inaccurate 
estimates tend to be shrunken toward zero, while accurately estimated effects, where the standard error is 
small relative to the estimate, remain unchanged. Unless otherwise specified, shrunken estimates are reported 
when presenting log-fold changes for individual genes within specific cell types. 

Differential gene expression over reference transitions 
 
Differential gene expression was computed across the Platt cell state transition graph on wild type data. If the 
Platt graph contains a directed edge from [parent] cell type x to [child] cell type y, the differential expression 
test would be the genes differentially expressed in cell type y when compared to cell type x. These results were 
classified into different gene expression patterns such as activated, deactivated, upregulated, downregulated, 
or maintained. Patterns are defined as follows:  
 

• Activated: expressed in self, but not in parent 
• Deactivated: not expressed in self, expressed in parent 
• Upregulated: expressed in self, expressed in parent, higher than parent 
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• Downregulated: expressed in self, expressed in parent, lower than parent 
• Maintained: expressed in self, expressed in parents, same as parent 
• Absent: not expressed in self or parent 

 
If there is a branch point in the graph, genes are additionally labeled with a prefix:  
 

• Specifically: pattern is present in only one of the child cell types 
• Selectively: pattern is present in two or more of the child cell types but not all 

 
Deviantly expressed gene expression analysis  
 
Reference gene expression patterns were compared to the perturbation DEG results to classify genes as 
“deviantly expressed” (DvEG). Genes are DvEG in each perturbation if they are 1) upregulated during a wild 
type transition but are underexpressed in perturbed cells undergoing that same transition, 2) downregulated 
during a wild type transition but are overexpressed in perturbed cells undergoing that same transition or 3) 
maintained in the wild type transition, but differentially expressed in perturbed cells undergoing the same 
transition.  
 
Animal rearing, staging, and stocks 
 
Staging followed (Kimmel et al., 1995) and fish were maintained at 28.5°C under 14:10 light:dark cycles. Fish 
stocks used were wild type WIK/AB. Fish were anesthetized prior to imaging or dissociation with MS222 and 
euthanized by overdose of MS222. All procedures involving live animals followed federal, state and local 
guidelines for humane treatment and protocols approved by Institutional Animal Care and Use Committees 
(protocol #4405-02) of the University of Washington. 
 
In situ hybridization, immunohistochemistry and labeling 
 
Colorimetric in situ hybridization used digoxigenin labeled probes using standard conditions (Thisse & Thisse, 
2007). Tyramide signal amplification was performed according to the protocol by Lauter et al., (2011). 
 
Imaging 
 
Embryos live-imaged were anesthetized with MS222 and photographed on a Nikon AZ100 microscope. 
Embryos were put into 70% glycerol and imaged on a Nikon AZ100 microscope. Images were corrected for 
color balance and display levels as necessary with all conditions within each analysis grouping corrected 
identically. 
 
CRISPR-Cas9 mutagenesis in zebrafish embryos  
 
gRNAs were designed using either the Integrated DNA Technologies (IDT) or CRISPR online tools. gRNA and 
RNP preparation closely follow a recently published protocol for efficient CRISPR–Cas9 mutagenesis in 
zebrafish19. Briefly, gRNAs were synthesized as crispr RNAs (crRNAs, IDT), and a 50 µmol crRNA:trans-
activating crispr RNA (tracrRNA) duplex was generated by mixing equal parts of 100 µmol stocks. Cas9 protein 
(Alt-R S.p. Cas9 nuclease, v.3, IDT) was diluted to a 25 µmol stock solution in 20 nmol HEPES-NaOH (pH 7.5), 
350 mmol KCl, 20% glycerol. The RNP complex mixture was prepared fresh for each injection by combining 
1 µl 25 µmol crRNA:tracrRNA duplex (with equal parts each gRNA per gene target), 1 µl of 25 µmol Cas9 
Protein and 3 µl nuclease-free water. Before injection, the RNP complex solution was incubated for 5 min at 
37 °C and then kept at room temperature. Approximately 1–2 nl was injected into the cytoplasm of one-cell-
stage embryos. 
 
Chemical Inhibitor Screen 

Embryos were exposed to the inhibitors 100µM Cyclopamine (Cayman, cat. no. 11321) at shield stage with 
vehicle controls 1% / 239 µM Ethanol for Cyclopamine control. Embryos were exposed to the inhibitors 20µM 
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WntC59 (Cayman, cat. no. 16644) at 8-somite stage with vehicle control 0.24% / 33.8 µM DMSO. Embryo 
media was replaced and inhibitors or vehicle were replenished every 24 hours until time of collection. 
 
Preparation of Barcoded Nuclei  
 
Individual zebrafish embryos (18, 24, 36, 48 and 72 hpf) were manually dechorionated with forceps and 
transferred to a 10cm petri dish containing 1X TrypLE (Thermo Fisher, cat. no. 12604013) and MS222 
(Millipore Sigma, cat. no. 886-86-2). Embryos were dissociated into single cells following the protocol 
described in Saunders et al., 2023. Cell lysis and fixation followed the protocol described in Martin et al., 2023, 
with an additional 5μl of C6 amine-modified hash DNA oligo (10uM, IDT, 5′-
/5AmMC12/GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG[10bp 
barcode]BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA -3’) mixed into the Hypotonic Lysis Buffer Solution 
B. 
 
sci-RNA-seq3 library construction 
 
The fixed and hashed nuclei were processed according to the following protocol 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9839601/pdf/nihms-1846803.pdf (Martin et al., 2023) 
 
Sequencing, read processing, and cell filtering 
 
Sequencing, read processing, and cell filtering were performed according to Saunders et al., 2023. An 
enrichment cutoff of 2.5 was set based on the distribution of enrichment ratios. 
 
Data availability  
Processed data files used in the paper analysis are available for download at https://cole-trapnell-
lab.github.io/lmx1b/ under CC-BY-NC. The accession number for the scRNA-seq data reported will be 
available soon.  
 
Code availability  
Pipelines for generating count matrices from sci-RNA-seq3 sequencing data are available at 
https://github.com/bbi-lab/bbi-dmux and https://github.com/bbi-lab/bbi-sci. Analyses of the single-cell 
transcriptome data were performed using Monocle3, Hooke, and Platt; general tutorials can be found at 
https://cole-trapnell-lab.github.io/monocle3/, https://cole-trapnell-lab.github.io/hooke/, and https://cole-trapnell-
lab.github.io/platt/.  
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Supplemental Figure 1. Evaluating the performance of Hooke. A) Comparison of Hooke to other differential 
abundance tools. Receiver operating characteristic (ROC) curves comparing the true positive rate (TPR) and 
false positive rate (FPR) of Hooke to Beta-Binomial and Propeller. B) Evaluation of Hooke’s power to detect a 
range of effect sizes across embryo size and number of embryos. C) UMAP of myeloid cells colored by cell 
type. D) Hooke effect sizes compared to Beta-Binomial effect sizes. E) Summary of fold change effects of 23 
genetic perturbations across the time range for each cell type in the embryo dataset. “Gene”-mut refers to null 
mutants rather than crispants.  
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Supplemental Figure 2. Reference v2.0. A) UMAP of reference v2.0 plotted in global space colored by tissue. 
B) Subspace UMAPs of each tissue. C) Spatial origin of previously labeled differentiating hindbrain clusters 
inferred from the Liu dataset and Tangram Algorithm. D) Sankey plots mapping previous cell type labels to new 
spatial labels. E) Comparison of Reference 1.0 vs Reference 2.0. Bar plots compare the counts of reference 
annotations at three resolutions: cell type, cell type broad, and tissue 
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Supplemental Figure 3. Evaluating Platt graph support. A) Platt graph colored by average timepoint of each 
cell type. B) Density plot comparing the cell type proportion of unlinked vs linked cell types in the Platt graph. 
C) Schematic explanation of calculating monarch edge support. D) Platt graph with nodes and edges colored 
by amount of monarch support. E) Platt graph colored by edges with direct and indirect support from ZSCAPE 
perturbation data. 
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Supplemental Figure 4. Calculating DEGs across the graph. A) A schematic of how Platt identifies 
differentially expressed genes. It uses an inferred or provided state transition graph to guide the differential 
expression testing and classifies these genes into different pattern types. Activated: expressed in self, but not 
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in parent; Deactivated: not expressed in self, expressed in parent, no siblings; Upregulated: expressed in self, 
expressed higher in parent; Downregulated: expressed in self, expressed lower in parent; Maintained: 
expressed in self and in parents. B-E) Subsection of Platt graphs colored by gene expression of genes that 
were identified as active, upregulated, or selectively upregulated. F) Schematic of the calculation of the 
enrichment of Platt-derived genetic requirements compared to Monarch-derived genetic requirements. G) Platt 
graph colored by the -log10(p-value) of a hypergeometric test between Platt-derived genetic requirements and 
Monarch-derived genetic requirements. H) Bar plot comparing counts of nodes with DACTs, DEGs, both or 
none. I) Schematic representation of how DvEGs are determined. J) Barplot of the number of times each 
transcription factor has a differentially expressed pattern across lineages. Colors refer to pattern interpretation 
categories.  
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Supplemental Figure 5. Experimental metrics for ∆lmx1b experiment. A) In situs of ∆lmx1b embryos, en2a 
is a marker of the midbrain-hindbrain boundary B) and nphs2 is a marker of podocytes. C) Distribution of the 
highest UMI hash barcode per cell divided by the second highest UMI hash barcode per cell. Cells with a ratio 
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of 2.5 or greater, after subtracting background hash UMI level, were included in our study. D) Boxplot of the 
number of UMIs per cell across all embryos per perturbation (color) and timepoint. E) boxplot of the number of 
cells per embryo collected across all embryos per perturbation (color) and timepoint. F) UMAPS of ∆lmx1b and 
control cells across timepoints. G) Heatmap of fold change in abundance in all cell types for each ∆lmx1b 
timepoint collection vs controls. Black boxes denote significance (q<0.05, PLN regression). 
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Supplemental Figure 6. Edges supported by the ∆lmx1b crispant. A) Selected edges supported by lmx1b. 
B) Platt graphs colored by Hooke abundance change in ∆lmx1b crispant. C) Platt graphs colored by the sum of 
lmx1ba and lmx1bb wild type gene expression. 
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Supplemental Figure 7. Deviant ∆lmx1b DEGs. A) Platt state graphs colored by wild type gene expression of 
select genes that turn on in the graph section. B) Platt state graphs colored by the log fold change of select 
genes in ∆lmx1b compared to wild type (*: p < 0.05, **: p < 0.01, ***: p < 0.001).  
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