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ABSTRACT 19 

Single-cell RNA-seq can yield high-resolution cell-type-specific expression signatures that 20 
reveal new cell types and the developmental trajectories of cell lineages. Here, we apply this 21 
approach to A. thaliana root cells to capture gene expression in 3,121 root cells. We analyze 22 
these data with Monocle 3, which orders single cell transcriptomes in an unsupervised 23 
manner and uses machine learning to reconstruct single-cell developmental trajectories 24 
along pseudotime. We identify hundreds of genes with cell-type-specific expression, with 25 
pseudotime analysis of several cell lineages revealing both known and novel genes that are 26 
expressed along a developmental trajectory. We identify transcription factor motifs that 27 
are enriched in early and late cells, together with the corresponding candidate 28 
transcription factors that likely drive the observed expression patterns. We assess and 29 
interpret changes in total RNA expression along developmental trajectories and show that 30 
trajectory branch points mark developmental decisions. Finally, by applying heat stress to 31 
whole seedlings, we address the longstanding question of possible heterogeneity among cell 32 
types in the response to an abiotic stress. Although the response of canonical heat shock 33 
genes dominates expression across cell types, subtle but significant differences in other 34 
genes can be detected among cell types. Taken together, our results demonstrate that 35 
single-cell transcriptomics holds promise for studying plant development and plant 36 
physiology with unprecedented resolution. 37 
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 40 

 41 

INTRODUCTION 42 

Many features of plant organs such as roots are traceable to specialized cell lineages and their 43 

progenitors (Irish, 1991; Petricka et al., 2012). The developmental trajectories of these lineages 44 

have been based on tissue-specific and cell-type-specific expression data derived from tissue 45 

dissection and reporter gene-enabled cell sorting (Birnbaum et al., 2003; Brady et al., 2007; Li et 46 

al., 2016). However, tissue dissection is labor-intensive and imprecise, and cell sorting requires 47 

prior knowledge of cell-type-specific promoters and genetic manipulation to generate reporter 48 

lines. Few such lines are available for plants other than the reference plant Arabidopsis thaliana 49 

(Rogers and Benfey, 2015). Advances in single-cell transcriptomics can replace these labor-50 

intensive approaches. Single-cell RNA-seq has been applied to heterogeneous samples of human, 51 

worm, and virus origin, among others, yielding an unprecedented depth of cell-type-specific 52 

information (Cao et al., 2017; Irish, 1991; Packer and Trapnell, 2018; Russell et al., 2018; 53 

Trapnell, 2015; Trapnell et al., 2014). 54 

  55 

While several examples of single cell RNA-seq have been carried out in Arabidopsis (Efroni et 56 

al., 2016, 2015; Brennecke et al., 2013), they were restricted to only a few cells or cell types. No 57 

whole organ single-cell RNA-seq has been attempted in any plant species. The Arabidopsis 58 

examples focused on root tips, finely dissecting the dynamics of regeneration or assaying 59 

technical noise across single cells in a single cell type. Thus, a need exists for larger scale 60 

technology that allows a more complete characterization of the dynamics of development across 61 

many cell types in an unbiased way. Such technology would increase our ability to assay cell 62 

types without reporter gene-enabled cell sorting, identify developmental trajectories, and provide 63 

a comparison of how different cell types respond to stresses or drugs. Several high-throughput 64 

methods have been described for sequencing of RNA at a high throughput of single cells. Most 65 

of these, including most droplet-based methods, rely on the 3’ end capture of RNAs. However, 66 

unlike with bulk RNA-seq, the data from single cell methods can be sparse, such that genes with 67 

low expression can be more difficult to study. Here, we take advantage of expression data from 68 

root-specific reporter lines in A. thaliana (Birnbaum et al., 2003; Brady et al., 2007; Cartwright 69 

et al., 2009; Li et al., 2016) to explore the potential of single-cell RNA-seq to capture the 70 
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expression of known cell-type-specific genes and to identify new ones. We focus on roots of 71 

mature seedlings and probe the developmental trajectories of several cell lineages.  72 

 73 

  74 
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RESULTS 75 

 76 

Single cell RNA-seq of whole A. thaliana roots reveals distinct populations of cortex, 77 

endodermis, hair, non-hair, and stele cells  78 

We used whole A. thaliana roots from seven-day-old seedlings to generate protoplasts for 79 

transcriptome analysis using the 10x Genomics platform (Supplemental Figure 1A). We 80 

captured 3,121 root cells to obtain a median of 6,152 unique molecular identifiers (UMIs) per 81 

cell. UMIs here are 10 base random tags added to the cDNA molecules that allow us to 82 

differentiate unique cDNAs from PCR duplicates. These UMIs corresponded to the expression of 83 

a median of 2,445 genes per cell and a total of 22,419 genes, close to the gene content of A. 84 

thaliana. Quality measures for sequencing and read mapping were high. Of the approximately 85 

79,483,000 reads, 73.5% mapped to the TAIR10 A. thaliana genome assembly, with 67% of 86 

these annotated transcripts. These values are well within the range reported for droplet-based 87 

single-cell RNA-seq in animals and humans. 88 

 89 

For data analysis, we applied Monocle 3, which orders transcriptome profiles of single cells in an 90 

unsupervised manner without a priori knowledge of marker genes (Qiu et al., 2017a; Qiu et al., 91 

2017b; Trapnell et al., 2014). We used the 1500 genes in the data set (Supplemental Data Set 1) 92 

that showed the highest variation in expression (Supplemental Figure 1B). For unsupervised 93 

clustering, we used 25 principal components (PC). These 25 PCs accounted for 72.5% of the 94 

variance explained by the first 100 PCs, with the first PC explaining 11% and the 25th PC 95 

explaining 0.9% (Supplemental Figure 1C). Cells were projected onto two dimensions using 96 

the uniform manifold approximation and projection (UMAP) method (McInnes and Healy, 2018) 97 

and clustered, resulting in 11 clusters (Figure 1A) (Blondel et al., 2008). Most clusters showed 98 

similar levels of total nuclear mRNA, although clusters 9 and 11 were exceptions with higher 99 

levels (Supplemental Figure 1D). Because some of the UMAP clusters, specifically clusters 9 100 

and 11, consisted of cells that had higher than average amounts of nuclear mRNA, we were 101 

concerned that these clusters consisted merely of cells that were doublets, i.e. two (or more) cells 102 

that received the same barcode and that resulted in a hybrid transcriptome. As cells were 103 

physically separated by digestion, it was possible that two cells remained partially attached. In 104 

order to identify potential doublets in our data, we performed a doublet analysis using Scrublet 105 
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(Wolock et al., 2018), which uses barcode and UMI information to calculate the probability that 106 
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a cell is a doublet. This analysis identified only 6 cells, of 3,021 cells analyzed, as doublets, 107 

spread across multiple UMAP clusters and multiple cell types (Supplemental Figure 1E). 108 

Overall, given the low number of doublets, we did not attempt to remove these cells. 109 

 110 

To assign these clusters to cell types, we performed three complementary analyses relying on 111 

two expression data sets from tissue-specific and cell-type-specific reporter lines: an earlier one 112 

generated with microarrays (Brady et al., 2007; Cartwright et al., 2009) and a more recent one 113 

generated with RNA-seq and a greater number of lines (Li et al., 2016). We first compared the 114 

microarray expression data for each reporter line to the gene expression values in each single 115 

cell, using Spearman’s rank correlations to assign each cell a cell type identity based on highest 116 

correlation of gene expression (Figure 1B, Supplemental Data Set 2) (Brady et al., 2007; 117 

Cartwright et al., 2009). Second, we compared the RNA-seq expression data to the gene 118 

expression values in each single cell by Pearson’s correlation (Li et al., 2016, Supplemental 119 

Figure 2A). Third, we examined the expression of 530 cell-type-specific marker genes (Brady et 120 

al., 2007) by defining seven marker gene clusters with k-means clustering and calculating their 121 

average expression for each cell. We then compared each cell’s UMAP Louvain component 122 

cluster assignment (Figure 1A) with its marker-gene-based assignment. Louvain components 123 

were derived using the Louvain method for community detection (Blondel et al., 2008) which is 124 

implemented in Monocle 3. Unlike k-means clustering for which the user provides the desired 125 

number of clusters to partition a dataset, Louvain clustering optimizes modularity (i.e. the 126 

separation of clusters based on similarity within a cluster and among clusters), aiming for high 127 

density of cells within a cluster compared to sparse density for cells belonging to different 128 

clusters. The 11 clusters presented in Figure 1A optimized the modularity of the generated 129 

expression data and were not defined by us. 130 

 131 

In general, the UMAP clusters showed high and cluster-specific expression of marker genes. For 132 

example, cells in cluster 10 showed high and specific mean expression of cortex marker genes 133 

(Figure 1C, Supplemental Figure 3, Supplemental Data Set 3). Both expression correlations 134 

and marker gene expression allowed us to assign the Louvain components to five major groups: 135 

root hair cells, non-hair cells (containing both an early and late cluster), cortex cells, endodermis 136 

cells and stele cells (containing both xylem and phloem cells) (Figure 1A). Although some cells 137 
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were most highly correlated in expression with the cell type columella in Spearman’s rank tests 138 

and RNA-seq Pearson’s correlation, these cells co-clustered with non-hair cells (Figure 1B, 139 

Supplemental Figure 2). This finding is consistent with bulk RNA-seq data of sorted cells (Li et 140 

al., 2016). Specifically, the PET11 (columella) -sorted bulk RNA-seq data are most similar to 141 

bulk RNA-seq data sorted for GL2 and WER (Li et al., 2016), both of which mark non-hair cells 142 

(Petricka et al., 2012). Therefore, these cells were grouped as early non-hair cells with other non-143 

hair cells in Louvain component 8. As their expression values were best correlated with RNA-144 

seq data for WER-sorted cells, they likely represent a mix of early non-hair and lateral root cap 145 

cells, which have very similar expression profiles (Supplemental Figure 2). 146 

 147 

We assessed the extent to which combined single-cell root expression data resembled bulk whole 148 

root expression data (Li et al., 2016) (Figure 1D, E). We observed strong correlations between 149 

these two data sets (Pearson’s correlation coefficient [R2]=0.52, Spearman’s ρ=0.71). We also 150 

compared the combined single-cell expression data to three bulk expression data sets 151 

representing the major developmental zones in the A. thaliana root: the meristematic zone, the 152 

elongation zone, and the maturation zone (Figure 1E). We observed the highest correlation of 153 

single-cell and bulk expression in the elongation zone (R2=0.70, ρ=0.83) and a lower correlation 154 

in the maturation zone (R2=0.58, ρ=0.70). This observation is surprising given the more mature 155 

developmental stage of the harvested roots (Supplemental Figure 1A), and likely reflects that 156 

younger cells are more easily digested during protoplasting and contribute in greater numbers to 157 

the gene expression data. As expected, single-cell and bulk expression were poorly correlated in 158 

the meristematic zone (R2=0.11, ρ=0.43), as meristematic tissue accounts for only a small 159 

proportion of mature roots. Furthermore, we compared tissue-specific expression (Li et al., 2016) 160 

to expression both in the annotated cell clusters and in cells expressing appropriate marker genes. 161 

In general, we found strong correlations among these data sets, suggesting that the clusters are 162 

annotated correctly (Supplemental Table 1).  163 

 164 

We also compared the relative representation of root cell types between our data set and 165 

estimates based on microscopy studies (Figure 1F) (Brady et al., 2007; Cartwright et al., 2009). 166 

Independent of annotation method, we observed the expected numbers of cortex (222 167 

Spearman’s/ 233 UMAP), endodermis (306/ 304), non-hair cells (1201/ 1061) and columella 168 
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cells (111/ no UMAP cluster). Hair cells (565/ 898) were overrepresented whereas stele cells 169 

(508/ 490) were underrepresented, possibly reflecting a bias in the protoplast preparation of 170 

whole root tissue. 171 

 172 

Protoplasting, the removal of the plant cell wall, alters the expression of 346 genes (Birnbaum et 173 

al., 2003); 76 of these genes were included in the 1500 genes with the highest variation in 174 

expression (Supplemental Data Set 1, Supplemental Figure 1B) that we used for clustering. 175 

Some of the 76 genes showed cell-type-specific expression. To exclude the possibility that the 176 

expression pattern of these genes produced artefactual clusters and cell-type annotations, we 177 

removed them from the analysis and re-clustered, which resulted in a similar UMAP 178 

visualization, with similar numbers of Louvain components and cell types. 179 

 180 

Single-cell RNA-seq of identifies novel genes with cell-type and tissue-type-specific 181 

expression 182 

Some marker genes are not expressed exclusively in a single cell type, making it desirable to 183 

identify additional genes with cell-type-specific expression. We first confirmed the high and 184 

cluster-specific expression of well-known marker genes (Figure 2A, Supplemental Figure 4) 185 

(Li et al., 2016) such as the root-hair-specific COBL9, the endodermis-specific SCR and the three 186 

stele-specific genes MYB46 (xylem-specific), APL (phloem-specific), and SUC2 (phloem-187 

specific). The nonspecific expression of the quiescent center cell marker genes WOX5 and 188 

AGL42 is likely due to the failure to capture sufficient numbers of these rare cells. The 189 

nonspecific expression of WOL and the more heterogeneous pattern of both WER and GL2 190 

expression have been previously observed (Brady et al., 2007; Winter et al., 2007).  191 

Second, to find novel marker genes, we identified genes with significantly different expression 192 

within and among Louvain component clusters by applying the Moran’s I test implemented in 193 

Monocle 3. We found 317 genes with cluster-specific expression, 164 of which were novel, 194 

including at least one in each cluster (Figure 2A, Supplemental Data Set 4). Using cell-type 195 

annotations rather than Louvain clusters, we identified 510 genes with cell-type-specific 196 

expression, of which 317 overlapped with the Louvain component cluster-specific expression 197 

genes, as well as an additional 125 novel genes, some of which have been implicated in the 198 

development of a cell lineage in targeted molecular genetics studies.  199 
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 200 

For example, the stele-specific AT1G8810 (ABS5, T5L1) gene (cluster 7, Figure 2A) encodes a 201 

bHLH protein that promotes vascular cell division and differentiation as part of a heterodimer 202 

with second bHLH protein, LHW (Katayama et al., 2015; Ohashi-Ito et al., 2014). Another stele-203 

specific gene, AT4G36160 (ANAC076, VND2) (cluster 7), encodes a ClassIIB NAC-domain 204 

transcription factor that contributes to xylem vessel element differentiation by promoting 205 

secondary cell wall formation and programmed cell death (Tan et al., 2018). In tissue-specific 206 

bulk data (Brady et al., 2007; Winter et al., 2007), both genes show xylem-specific expression 207 
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consistent with their biological functions; T5L1 expression is high only in the meristematic and 208 

elongation zones, while VND2 expression starts in the elongation zone and persists throughout 209 

the maturation zone. Other genes, not previously implicated in root development, show tissue-210 

specific bulk expression patterns consistent with the single-cell data. For example, AT1G54940 211 

(GUX4, PGSIP4), which encodes a xylan glucuronosyltransferase (Lee et al., 2012; Mortimer et 212 

al., 2010), was specifically expressed in hair cells (cluster 9) and is most highly expressed in 213 

cells destined to become hair cells in the elongation zone and in differentiated hair cells in the 214 

maturation zone (Brady et al., 2007; Cartwright et al., 2009).  215 

 216 

Expression of some transcription factors shows high correlation with specific cell types 217 

We asked whether we could identify transcription factors that may contribute to the cluster-218 

specific expression patterns. To do so, we tested for transcription factor motif enrichments in the 219 

proximal regulatory regions of genes with cluster-specific expression, examining 500 bp 220 

upstream of the transcription start site (Alexandre et al., 2018; Sullivan et al., 2014) and a 221 

comprehensive collection of A. thaliana transcription factor motifs (O'Malley et al., 2016). This 222 

analysis revealed significant transcription factor motif enrichments among clusters and annotated 223 

major tissues and cell types (Figure 2B).  224 

 225 

As transcription factors in A. thaliana often belong to large gene families without factor-specific 226 

motif information (Riechmann et al., 2000), it is challenging to deduce the identity of the specific 227 

transcription factor that drives cluster-specific transcription factor motif enrichment and 228 

expression. As an approximation, we examined transcription factors that were expressed in the 229 

cluster or tissue in which a significant enrichment of their motif was found, or in neighboring 230 

cell layers (some factors move between cells (Petricka et al., 2012)) (Supplemental Data Set 4). 231 

We focused first on the small BZR/BEH gene family whose motif was specifically enriched in 232 

cortex cells (cluster 10). Of the six genes (BEH1/AT3G50750, BEH2/AT4G36780, 233 

BEH3/AT4G18890, BEH4/AT1G78700, BES1/AT1G19350, and BZR1/AT1G75080) the single 234 

recessive beh4, bes1, and bzr1 mutants exhibit altered hypocotyl length (Lachowiec et al., 2018). 235 

Double mutant analysis suggests partial functional redundancy, which agrees with our 236 

observation of overlapping expression patterns for these genes across cell types (Supplemental 237 

Figure 5A, B). In contrast, neither beh1 and beh2 single mutants nor the respective double 238 
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mutant show phenotypic defects (Lachowiec et al., 2018). However, BEH2 was the most highly 239 

expressed BZR/BEH family member across clusters and annotated root tissue and cell types 240 

(Supplemental Figure 5A, B). Although BEH4, the most ancient family member with the 241 

strongest phenotypic impact, showed cortex-specific expression, none of the BZR/BEH genes 242 

showed significance for cluster-specific expression, suggesting that combinations of family 243 

members, possibly as heterodimers, may result in the corresponding motif enrichment in cortex 244 

cells (Supplemental Figure 5A, B). In particular, BES1 and BZR expression was highly 245 

correlated, consistent with these genes being the most recent duplicates in the family 246 

(Supplemental Figure 5C) (Lachowiec et al., 2013; Lan and Pritchard, 2016).  247 

 248 

In contrast to the BEH/BZR gene family, we found stronger cluster specificity for some TCP 249 

transcription factors. The TCP motif was strongly enriched in cortex (cluster 10), endodermis 250 

(cluster 1) and stele (cluster 7). Of the 24 TCP transcription factors, we detected expression for 251 

eight. Of these, TCP14 (AT3G47620) and TCP15 (AT1G69690) were expressed primarily in 252 

stele (clusters 7 and 4) although this cluster-specific expression was not statistically significant 253 

(Figure 2B, Supplemental Figure 5D, E, Supplemental Data Set 4). TCP14 and TCP15 are 254 

class I TCP factors thought to promote development. Acting together, TCP14 and TCP15 255 

promote cell division in young internodes (Kieffer et al., 2011), seed germination (Resentini et 256 

al., 2015), cytokinin and auxin responses during gynoecium development (Lucero et al., 2015), 257 

and repression of endoreduplication (Peng et al., 2015). Both genes are expressed in stele in bulk 258 

tissue data (Brady et al., 2007; Winter et al., 2007), with TCP14 expression also observed in the 259 

vasculature by in situ hybridization (Tatematsu et al., 2008). TCP14 can affect gene expression 260 

in a non-cell-autonomous manner.  261 

 262 

To further investigate the co-occurrence of cluster-specific transcription factor motif enrichments 263 

with transcription factor expression, we next examined the novel genes with significant cluster-264 

specific expression. Eight of these encode transcription factors with corresponding highly 265 

enriched cluster-specific binding motifs. For one of these, BRN2 (AT4G10350), cluster-specific 266 

expression coincided with enrichment of the NAC transcription factor family motif(cluster 8, 267 

non-hair and lateral root cap cells, Figure 2B). BRN2 encodes a ClassIIB NAC transcription 268 

factor implicated in root cap maturation together with BRN1 and SMB. Class IIB NAC 269 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/448514doi: bioRxiv preprint first posted online Oct. 22, 2018; 

http://dx.doi.org/10.1101/448514
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11

transcription factors are thought to contribute to terminal cell differentiation accompanied by 270 

strong cell wall modifications (Bennett et al., 2010). In our data, BRN2 was most highly 271 

expressed in cluster 8 (non-hair and lateral root cap cells) and less so in cluster 6 (Supplemental 272 

Data Set 4).  273 

 274 

Clustering stele cells identifies novel genes with cell-type specific expression in the 275 

vasculature 276 

Our initial attempts to annotate and separate cell types within stele tissue with marker gene 277 

expression or Spearman’s rank correlations failed. Instead, we separately clustered stele cells to 278 

reveal 6 sub-clusters upon UMAP visualization, with 5 sub-clusters containing more than 40 279 

cells. Their annotation via Spearman’s rank correlation with sorted bulk data was not successful; 280 

however, using well-established marker genes expression, we detected cluster-specific 281 

expression patterns (Figure 3A and B).  282 

 283 

Cells closely related to xylem pole pericycle constituted the largest group of cells (205 cells); 284 

phloem pole pericycle cells were the second largest (84 cells). The high number of pericycle 285 

cells likely reflects our experimental procedure, as these cells reside on the exterior of the 286 

vascular bundle. Both phloem and xylem clusters showed similar numbers of cells (77 cells and 287 

72 cells respectively); the phloem companion cells formed a distinct cluster. We observed the 288 

expected sub-cluster expression for several known genes and marker genes and identified novel 289 

genes with sub-cluster-specific expression (Figure 3C, D, Supplemental Data Set 1). Although 290 

there was some discrepancy, especially for the APL gene, which is expressed in both companion 291 

and phloem cells (Figure 3C), this is largely due to missing data. 292 

 293 

Pseudotime trajectories coincide with the development stages of cortex, endodermis, and 294 

hair cells 295 

We next sought to visualize the continuous program of gene expression changes that occurs as 296 

each cell type in root differentiates. Because whole roots contain a mix of cells at varying 297 

developmental stages, we reasoned that our experiment should have captured a representative 298 

snapshot of their differentiation. Monocle not only clusters cells by type but also places them in 299 

“pseudotime” order along a trajectory that describes their maturity. To make these trajectories, 300 
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Monocle 3 learns an explicit principal graph from the single-cell-expression data through 301 
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reversed graph embedding, an advanced machine learning method (Qiu et al., 2017a; Qiu et al., 302 
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2017b; Trapnell et al., 2014). To dissect the developmental dynamics of individual clusters, we 303 

first focused on the well-defined root-hair cells, in which combined single-cell expression values 304 

highly correlated with those from bulk protoplasts sorted for expression of the COBL9 root-hair 305 

marker gene (Supplemental Table 1). To annotate the unsupervised trajectory that Monocle 3 306 

created for hair cells, we used the Spearman’s rank test to compare expression in all cells to bulk 307 

expression data representing 13 different developmental stages in root tissues from all the 308 

available sorted cell types (Supplemental Figure 6) (Brady et al., 2007; Cartwright et al., 2009). 309 

Each cell was assigned the developmental stage and cell type most correlated with its expression 310 

values (Figure 4A). The hair cells with the earliest developmental stage assignment were 311 

designated as the root of the trajectory. Next, pseudotime was calculated for all other hair cells 312 

based on their distance from the root of the trajectory (Figure 4B). We compared this calculated 313 

pseudotime with the most highly correlated developmental assignment from bulk data, finding 314 

close agreement (Figure 4B). Examples of genes that are expressed early and late in pseudotime 315 

in the UMAP hair cluster are shown in Figure 4C.  316 

 317 

Hair cells undergo endoreduplication as they mature, resulting in  up to 16N genomic copies in 318 

the developmental stages assayed (Bhosale et al., 2018). Although endoreduplication is thought 319 

to increase transcription rates (Bourdon et al., 2012), general transcription might decrease as 320 

hair-cell-specific genes become more highly expressed during hair cell differentiation. Single-321 

cell RNA-seq affords us the opportunity to explore whether transcription rates differ across 322 

development. Single-cell RNA-seq can measure both relative expression (as in bulk RNA-seq) 323 

and the total number of RNA molecules per cell. The total amount of cellular mRNA was 324 

drastically reduced across hair cell development (Figure 4D). This result may be due to technical 325 

bias; for example, gene expression in larger, endoreduplicated cells may be more difficult to 326 

assess with this droplet-based method. If so, the observed reduction in captured transcripts 327 

should affect all genes more or less equally. Alternatively, this observation may reflect hair cell 328 

differentiation, whereby transcription of hair-cell-specific genes should remain unaffected or 329 

increase over pseudotime. Our results support the latter scenario as transcription of hair-cell-330 

specific genes appears to increase over pseudotime, consistent with these cells undergoing 331 

differentiation towards terminally differentiated hair cells (Figure 4E, Supplemental Figure 332 

7A). 333 
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 334 

To further explore this transcriptional dynamic, we calculated RNA velocity (La Manno et al., 335 

2018), a measure of the transcriptional rate of each gene in each cell of the hair cell cluster. RNA 336 

velocity takes advantage of errors in priming during 3’ end reverse transcription to determine the 337 

splicing rate per gene and cell. It compares nascent (unspliced) mRNA to mature (spliced) 338 

mRNA; an overall relative higher ratio of unspliced to spliced transcripts indicates that 339 

transcription is increasing. In our data, only ~4% of reads were informative for annotating 340 

splicing rates, a lower percentage than what has been used in mammalian cells for velocity 341 

analyses, and thus our results may be less reliable. Based on data for 996 genes, mean RNA 342 

velocity increased across pseudotime (Supplemental Figure 7B, p = 2.2 e-16 linear model, rho 343 

= 0.73). This increase in velocity was associated with the predicted changes in endoreduplication 344 

(Bhosale et al., 2018), especially between the 4N and 8N stages (Supplemental Figure 7C, 345 

Tukey’s multiple comparison p-value = 0.0477).  346 

 347 

We also observed developmental signals in other cell types, including cortex and endodermis 348 

(Figure 5A-D, Supplemental Figure 8). Combined single-cell expression values for cortex cells 349 

highly correlated with those from bulk protoplasts sorted for expression of the COR cortex 350 

marker gene (Figure 5B, R2= 0.74, rho=0.86). As Monocle 3 did not identify a trajectory for 351 

cortex cells in the context of all cells, we isolated the cortex cells and re-performed UMAP 352 

dimensionality reduction, clustering, and graph embedding (Supplemental Data Set 1). Each 353 

cortex cell was assigned a developmental stage based on its Spearman’s rank correlation with 354 

bulk expression data (Brady et al., 2007; Cartwright et al., 2009). Cortex cells with the earliest 355 

developmental signal were designated as the root of the cortex trajectory, and pseudotime was 356 

assigned to the remaining cortex cells based on their distance from the root (Figure 5A-D, 357 

Supplemental Figure 6). As pseudotime increased for cortex cells, so did their age, indicating 358 

good agreement of the trajectory with developmental bulk RNA-seq data. Although we observed 359 

some decrease in total RNA expression and increased expression in cell-type specific genes for 360 

endodermis, we did not see a clear pattern of change in total RNA across cortex pseudotime 361 

(Supplemental Figures 8 & 9).  362 

 363 
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We asked whether we could assign the transcription factors that drive gene expression along 364 
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these developmental trajectories in early and late hair, cortex, and endodermis cells. As before, 365 

we first analyzed transcription factor motif enrichments and then explored the expression of the 366 

corresponding transcription factor gene families. Indeed, for most developmentally enriched 367 

transcription factor motifs, we could pinpoint candidate transcription factors that are expressed 368 

either early or late. For example, the AP2/EREBP (APETALA2/ethylene responsive element 369 

binding protein) transcription factor family is one of the largest in A. thaliana (Riechmann et al., 370 

2000), with nearly 80 covered in our data set; of these, only four (AT2G25820, At5G65130, 371 

AT1G36060, AT1G44830) showed strong expression in late hair cells (Figure 4F, G, 372 

Supplemental Figure 10). One of these, AT1G36060 (Translucent Green), regulates expression 373 

of aquaporin genes (Zhu et al., 2014). Overexpression of this gene confers greater drought 374 

tolerance (Zhu et al., 2014), consistent with its expression in older hair cells. Similar examples of 375 

developmental stage-specific motif enrichments with corresponding transcription factor 376 

expression were also found for cortex and endodermis (Figure 5E, F, Supplemental Figure 8, 377 

Supplemental Figure 10). 378 

 379 

Branch points in developmental trajectories mark developmental decisions  380 

Although a developmental trajectory that reflects the differentiation from early to late cells 381 

within a cell type should be branchless, we did observe some branch points, for example in 382 

Louvain component 8, affording us the opportunity to explore their biological relevance. As 383 

discussed, Louvain component 8 contains early non-hair cells and likely some lateral root cap 384 

cells. To further explore the cells within the branch, we performed a principal graph test, 385 

comparing their expression profiles to those of cells elsewhere in the cluster (Figure 6A). We 386 

found that cells within the branch were significantly enriched for expression of genes involved in 387 

cell plate formation, cytokinesis and cell cycle. We explored this enrichment for cell cycle 388 

annotations by comparing expression of previously identified core cell cycle genes (Gutierrez, 389 

2009) in cells within the branch to cells in the rest of the cluster, finding many core cell cycle 390 

genes, in particular many G2 genes, to be specifically expressed in branch cells (Figure 6B). 391 

Among these genes were several of the cyclin-dependent kinase B family members that direct 392 

the G2 to M transition. Two cyclin-dependent kinase subunits (CKS1 and CKS2), thought to 393 

interact with several CDK family members, were also specifically expressed in branch cells 394 

(Vandepoele et al., 2002). Other branch-cell-specific genes included AUR1 and AUR2, both 395 
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involved in lateral root formation and cell plate formation (Figure 6C, Van Damme et al., 2011). 396 
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Louvain component 9 also showed a strong, but short branching point. We did not find any 397 

biological processes enriched in genes expressed specifically in this short branch; however, one 398 

gene whose expression is known to be affected by protoplasting was specifically expressed in 399 

these cells, perhaps reflecting that cells within this branch were more stressed by our 400 

experimental procedure (data not shown). 401 

 402 

Heat-shocked root cells show subtle expression differences among cell types 403 

A major question in studying plant responses to abiotic stress, such as heat or drought, is the 404 

extent to which such responses are non-uniform across cell types. Canonically, the heat stress 405 

response is characterized by rapid and massive up-regulation of a few loci, mostly encoding heat 406 

shock proteins, with dramatic down-regulation of most other loci, in part because of altered 407 

mRNA splicing and transport (Saavedra et al., 1996; Yost and Lindquist, 1986, 1988). In plants, 408 

a set of 63 genes, most encoding heat shock proteins, show extreme chromatin accessibility at 409 

both promoter and gene body upon heat stress, consistent with their high expression (Sullivan et 410 

al., 2014). In mammals and insects, not all cells are competent to exhibit the hallmarks of the 411 

heat shock response (Dura, 1981; Morange et al., 1984); specifically, cells in early embryonic 412 

development fail to induce heat shock protein expression upon stress.  413 

 414 

We explored whether all cells within developing roots were capable of exhibiting a typical heat 415 

shock response. To do so, we applied a standard heat stress (45 min, 38ºC) to eight-day-old 416 

seedlings, harvested their roots along with roots from age- and time-matched control seedlings, 417 

and generated protoplasts for single-cell RNA-seq of both samples. For the control sample, we 418 

captured 1076 cells, assaying expression for a median 4,079 genes per cell and a total of 22, 971 419 

genes; 82.7% of reads mapped to the TAIR10 genome assembly. The results for these control 420 

cells were similar to those described earlier with regard to captured cell types, proportion of cell 421 

types (e.g. 28.8% vs. 34% annotated hair cells and 9.7% vs. 7.2% endodermis cells), and 422 

correlation of gene expression (R2 = 0.86 for the 21,107 genes captured in both experiments). For 423 

the heat shock sample, we captured 1,009 cells, assaying expression for a median 4,384 genes 424 

per cell and a total of 21,237 genes; 79.8% of reads mapped to the TAIR10 genome assembly.  425 

 426 
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Due to global gene expression changes upon heat shock, we could not simply assign cell and 427 

tissue types as before for heat-shocked cells. The overwhelming impact of heat shock was also 428 

apparent when comparing the first and second highest cell type and developmental Spearman’s 429 

rank correlations for control cells and heat-shocked cells. Upon heat shock, many cells, 430 

especially those with non-hair, phloem and columella as their highest rank, commonly showed as 431 

their second highest rank a different cell type instead of another developmental time point of the 432 

same cell type as observed in control cells (Supplemental Figure 11A). Unsurprisingly, the 433 

drastic changes in gene expression led to cells being embedded in UMAP space primarily as a 434 

function of treatment, making direct comparisons of treatment effects on any one cell type 435 

impossible (Supplemental Figure 11B). To enable such comparisons, we used a mutual nearest 436 

neighbor to embed cells conditioned on treatment in UMAP space (Haghverdi et al., 2018). The 437 

mutual nearest neighbor method was originally developed to account for batch effects by 438 

identifying the most similar cells between each batch and applying a correction to enable proper 439 

alignment of data sets. Here, we employ this technique to overcome the lack of marker 440 

expression in our heat-shock treated cells and match them to their untreated counterpart based on 441 

overall transcriptome similarity (Figure 7A). This procedure yielded corresponding clusters in 442 

control and heat-shocked cells, albeit with varying cell numbers for most (Supplemental Figure 443 

11C, Supplemental Table 2).  444 

 445 

In response to stress, organisms are thought to upregulate stress genes and to specifically 446 

downregulate genes involved in growth and development to optimize resource allocation. In 447 

response to heat stress, this presumed ‘dichotomy’ in gene expression is mirrored by the rapid 448 

localization of RNA polymerase II to the heat shock gene loci and its depletion elsewhere in the 449 

genome (Teves and Henikoff, 2011). Our data provide strong evidence of this regulatory trade-450 

off at the level of individual cells. Using hair cells (Louvain component 2) as an example, we 451 

found that hair-cell-specific genes are overwhelmingly repressed and that heat shock genes are 452 

upregulated, often dramatically so (Figure 7B-D). Indeed, HSP101, the most highly expressed 453 

and chromatin-accessible gene upon heat shock in previous studies (Sullivan et al., 2014), was 454 

strongly expressed across all clusters while expression of the hair marker gene COBL9 decreased 455 

dramatically upon stress (Figure 7C, D). 456 

 457 
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Having established comparable clusters, we next identified genes that were differentially 458 
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expressed as a function of treatment and cluster identity, excluding those with less than 15 cells 459 

in either control or heat shock conditions. This analysis identified 8,526 genes (FDR < 0.1%) 460 

whose expression was altered by heat shock treatment in one or more clusters; of these, 2,627 461 

genes were up- or downregulated at least 2-fold (Figure 7E, Supplementary Data Set 5,  FDR 462 

< 0.1% and absolute value of log2 fold change > 1). As for hair cells (Figure 7B), cell-type 463 

marker genes for all clusters were enriched among the downregulated genes upon heat shock. To 464 

identify cluster-specific differences in the response to heat shock, we compared gene expression 465 

of cells within individual clusters to the rest of the cells across treatments. We observed the 466 

largest number of cluster-specific gene expression changes in hair, non-hair and cortex cells 467 

(Figure 7F). As these cell types are the three outermost cell layers of the root, they may be 468 

exposed more directly to the heat shock and respond more quickly. Genes differentially 469 

expressed in hair cells (Louvain component 2) upon heat shock were enriched for ribosome 470 

associated genes and RNA methylation. Stele cells (Louvain component 6) showed differential 471 

expression of genes involved in cell wall organization and biogenesis, and endodermis cells 472 

(Louvain component 4) showed differential expression of genes involved in response to external, 473 

chemical and stress stimuli as well as nitrate and anion transport (Figure 7F).  474 

 475 

The expression of heat shock proteins protects cells from heat shock and aids their recovery 476 

(Parsell et al., 1993; Parsell and Lindquist, 1993; Queitsch et al., 2000). We were interested in 477 

whether we could detect cluster- and cell-type-specific differences in the canonical heat shock 478 

response. In principle, such differences could be exploited to alter heat shock protein expression 479 

in a cell-type-specific manner to boost plant heat and drought tolerance without pleiotropically 480 

decreasing whole-organism fitness. To address such possible differences, we focused on genes 481 

that from bulk analyses have differential expression upon heat shock (1783 genes) or reside near 482 

regulatory regions that change in accessibility upon heat shock (1730 genes) (Alexandre et al., 483 

2018; Sullivan et al., 2014). Although these gene sets overlap (942 genes), they contain 484 

complementary information, as changes in accessibility do not necessarily translate into altered 485 

expression, and vice versa (Alexandre et al., 2018). In our single-cell expression analysis, we 486 

identified 752 of 1783 heat-responsive genes as differentially expressed upon heat shock, and 487 

564 of 1730 genes near dynamic regulatory regions as differentially expressed. We hierarchically 488 

clustered control and heat shock-treated single-cell transcriptomes for both gene sets 489 
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(Supplemental Figure 12A, C), resulting in several gene clusters with distinct expression 490 

patterns. Overall, cellular responses were dominated by the canonical heat-shock response, as 491 

visualized in cluster 4 (Supplemental Figure 12A) and cluster 2 (Supplemental Figure 12C). 492 

The 63 genes showing extreme accessibility and high expression upon heat shock (Sullivan et al., 493 

2014) are largely contained in these two clusters (Supplemental Figure 12A, cluster 4, 49 of 63; 494 

Supplemental Figure 12C, cluster 2, 42 of 63). 495 

 496 

Our analysis also revealed subtle but significant differences among some tissue types 497 

(Supplemental Figure 12A, B, e.g. clusters 3 and 8, Supplemental Figure 12C, D, e.g. clusters 498 

5 and 7, Supplemental Data Set 6). Although most of these gene clusters were not enriched for 499 

specific annotations, cluster 8 genes were associated with rRNA metabolic processes (p-500 

value=0.048) and cluster 5 genes (Supplemental Figure 12A, B) were enriched for transport 501 

genes (p-value=0.045). These results demonstrate both the promise and the challenges inherent 502 

in comparing single-cell data across different conditions and treatments.  503 

 504 

  505 
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DISCUSSION 506 

Here, we use A. thaliana roots to establish both experimental and analytic procedures for single-507 

cell RNA-seq in plants. Using Monocle 3, we could assign over 3000 cells to expected cell and 508 

tissue types with high confidence. In particular, cortex, endodermis and hair cells were easily 509 

identified. However, distinguishing other cell types was challenging. For example, non-hair and 510 

columella cells had high similarity in their expression profiles, consistent with their correlation in 511 

bulk expression data (Brady et al., 2007; Cartwright et al., 2009). Similarly, it was difficult to 512 

designate cells in Louvain component 8 as early non-hair cells, as these cells showed 513 

overlapping expression signatures for early non-hair cells, lateral root caps, and epidermis cells 514 

before differentiation to hair and non-hair cells. These Louvain component 8 cells were difficult 515 

to distinguish further with the sparse expression data typical for single cell analysis, however we 516 

postulate that in fact the branch of component 8 may actually be the root of the trajectory and are 517 

cells dividing out of the epidermis/root cap precursor and cells either become root cap cells or 518 

epidermis.  519 

 520 

We also could not initially split stele tissue into individual cell types, likely because the 521 

difficulty of digesting the cell walls of the tightly packed vascular bundle resulted in fewer cells 522 

than expected (Brady et al., 2007; Cartwright et al., 2009). However, analyzing stele cells 523 

separately yielded 6 sub-clusters, which correspond to known vasculature cell types. Our 524 

approach to annotate these sub-clusters exemplifies the ad hoc nature of current single-cell 525 

genomics studies, which require all available sources of information to be exploited to interpret 526 

the genomic data. Neither Spearman rank correlations with sorted bulk RNA-seq data nor 527 

microarray expression data yielded obvious cluster identities. However, mean expression values 528 

of genes known to be expressed in vasculature cell types allowed us to assign the stele sub-529 

clusters.  530 

 531 

 We identified hundreds of novel genes with cell-type-specific and tissue-type-specific 532 

expression, which may allow the generation of new marker lines for detailed genetic analyses. 533 

These genes, together with cluster-specific enriched transcription factor motifs and their 534 

corresponding transcription factors, are candidates for driving differentiation and cell-type 535 

identity. Similarly, the developmental trajectories we identified highlight the potential of single 536 
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cell transcriptomics to advance a high resolution view of plant development. These trajectories 537 

can be detected without the use of spatial information because plants have a continuous body 538 

plan with new cells continuously arising while older cells persist. Additionally, while this study 539 

allowed us to infer transcription factor motifs and candidate transcription factors, future analyses 540 

with greater numbers of cells than assayed here may include combinatorial expression of 541 

multiple transcription factor family members.  542 

 543 

We explored the relationships of endoreduplication, transcriptional rates, and 544 

differentiation to find that transcriptional rates, measured as mRNA velocity, increase with 545 

increasing ploidy. However, this transcriptional increase appears to be limited to genes 546 

specifically expressed in hair cells, as overall levels of RNA decreased over pseudotime. These 547 

observations are consistent with hair cells becoming more specialized and moving towards a 548 

terminally differentiated state over time. However, this phenomenon of increasing specialization 549 

was not as apparent in other cell types. This difference may be due to biological causes, such as 550 

the higher rates of endoreduplication in hair cells, or to technical causes, such as the better 551 

clustering and trajectory of hair cells compared to the other cell types assayed. 552 

 553 

By allowing trajectories with side branches, we discovered that branch points can mark 554 

developmental decisions. In Louvain component 8, the small but distinct cell-cycle enriched 555 

branch may mark lateral root primordia cells differentiating into epidermal cells or 556 

epidermal/lateral root precursor cells. Cells within this branch express many cell cycle genes, 557 

among them members of the CDKB family that govern the G2 to M transition. Moreover, these 558 

cells specifically express the AUR1 and AUR2 genes, which function in cell plate formation; 559 

plants with mutations in these genes lack lateral roots (Van Damme et al., 2011). Although 560 

expression of cell cycle genes may persist in non-dividing cells because of their roles in 561 

endoreduplication, AUR1 and AUR2 expression (and cell plate formation) should not persist, 562 

consistent with our speculation that the cells within this branch are actively dividing cells in the 563 

G2 to M transition (Gutierrez, 2009).   564 

 565 

 We explored the A. thaliana heat shock response with single-cell RNA-seq because not 566 

all cells and tissues are equally competent to respond to stress. By identifying plant cell types 567 
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that most strongly respond to abiotic stresses such as heat, drought, and nutrient starvation, 568 

ultimately we may be able to genetically manipulate relevant cell types to generate stress-tolerant 569 

crops without pleiotropically affecting plant fitness and yield. Although all heat-shocked cells 570 

showed gene expression changes typical of the canonical heat shock genes, we detected subtle 571 

but highly significant expression differences among cells and tissue types for other genes. Thus, 572 

single-cell transcriptomics across stress conditions holds potential for future crop breeding and 573 

genetic engineering. However, such analyses require much larger numbers of cells than currently 574 

accessible by droplet-based methods. Moreover, such analyses should focus on treatments that 575 

are less overwhelmed by a strong canonical signal to increase resolution in detecting cell-type-576 

specific differences. 577 

 578 

In this study, we relied on the extensive and detailed expression data for bulk A. thaliana 579 

cell and tissue types to establish the validity of our approaches. The overwhelming 580 

correspondence of our findings with these and other data derived from traditional molecular 581 

genetics provides confidence that less well-characterized A. thaliana tissues and other plants, 582 

including crops, will be amenable to these approaches. Thus, continued progress on single-cell 583 

RNA-seq experiments should have a major impact on the analysis of plant development and 584 

environmental response.  585 

 586 

  587 
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METHODS 589 

Plant Material and Growth Conditions. Arabidopsis thaliana Col-0 seedlings were grown 590 

vertically at 22°C, on 1xMS + 1% sucrose plates covered with one layer of filter paper. Seven or 591 

eight days-old seedlings (LD, 16h light/8h dark, ~100 μmol m2 s) were collected around ZT3, 592 

and the roots/shoots excised with a sharp razor blade. For the heat-shock, seedling plates were 593 

transferred from 22°C to 38°C for 45 min (Conviron TC-26, light ~100 μmol m2 s), and the roots 594 

harvested immediately after.  595 

 596 

Protoplast Isolation. Protoplast isolation was done as previously described (Bargmann and 597 

Birnbaum, 2010), with slight modifications. Briefly, 1 g of whole-roots was incubated in 10 ml 598 

of protoplasting solution for 1.5 h at 75 rpm. After passing through a 40 μm strainer, protoplasts 599 

were centrifuged at 500 g for 5 min and washed once in protoplasting solution without enzymes. 600 

Final suspension volume was adjusted to a density of 500 – 1,000 cells/μl. Protoplasts were 601 

placed on ice until further processing. 602 

 603 

Single-cell RNA-seq protocol 604 

Single-cell RNA-seq was performed on fresh Arabidopsis root protoplast using the10X scRNA-605 

seq platform, the Chromium Single Cell Gene Expression Solution (10X Genomics).   606 

 607 

Data Analysis 608 

Estimating gene expression in individual cells 609 

Single-cell RNA-seq reads were sequenced and then mapped to the TAIR10 Arabidopsis genome 610 

using Cellranger (version 2.1.0) (https://support.10xgenomics.com/single-cell-gene-611 

expression/software/pipelines/latest/what-is-cell-ranger). Cellranger produces a matrix of UMI 612 

counts where each row is a gene and each column represents a cell. The ARAPORT gene 613 

annotation was used. For the heat shock analysis, reads from a control sample and reads from 614 

heat-shocked sample were aggregated using “cellranger aggr” to normalize libraries to 615 

equivalent number of mean reads per cell across libraries. 616 

 617 

Running Monocle 3: Dimensionality Reduction, and Cell Clustering The output of the cellranger 618 

pipeline was parsed into R (version 3.5.0) using the cellranger R kit (version 2.0.0) and 619 
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converted into a CellDataSet (cds) for further analysis using Monocle 3 alpha (version 2.99.1) 620 

(http://cole-trapnell-lab.github.io/monocle-release/monocle3/). All Monocle 3 analysis was 621 

performed on a High Performance Computing cluster using 128GB of RAM spread across 8 622 

cores. The lower detection limit for the cds was set at 0.5, and the expression family used set to 623 

negbinomial.size(). 624 

 625 

We visualized cell clusters and trajectories using the standard Monocle workflow. Monocle 626 

internally handles all normalization needed for dimensionality reduction, visualization, and 627 

differential expression via “size factors” that control for variability in library construction 628 

efficiency across cells. After estimating the library size factors for each cell (via 629 

estimateSizeFactors), and estimating the dispersion in expression for each gene (via 630 

estimateDispersions) in the dataset, the top 1500 genes in terms of dispersion, i.e. 1500 genes 631 

with the most expression variability in our dataset, were selected to order the cells into clusters. 632 

The expression values of these 1500 genes for each cell were log-transformed and projected onto 633 

the first 25 principal components via Monocle’s data pre-processing function (preprocessCDS). 634 

Then, these lower-dimensional coordinates were used to initialize a nonlinear manifold learning 635 

algorithm implemented in Monocle 3 called Uniform Manifold Approximation and Projection, or 636 

UMAP (via reduceDimension) (McInnes and Healy, 2018). This allows us to visualize the data 637 

unto two or three dimensions. Specifically, we projected onto 2 components using the cosine 638 

distance metric, setting the parameters “n_neighbors” to 50, and “min_dist” to 0.1.  639 

 640 

The Louvain method was used to detect cell clusters in our two dimensional representation of the 641 

dataset (partitionCells); this resulted in 11 cell clusters, or Louvain components. Cells were then 642 

clustered into “super” groups using a method derived from “approximate graph abstraction” 643 

(Wolf et al., 2018) and for each super group, a cell trajectory was drawn atop the projection 644 

using Monocle’s reversed graph embedding algorithm, which is derived from “SimplePPT” 645 

(learnGraph) (Mao et al., 2015). This yielded 6 cell trajectories.  646 

 647 

To further analyze the clusters we annotated as stele, Clusters 3, 4, and 7 were reclustered 648 

together and were reanalyzed using Monocle 3 as previously described except the parameter 649 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/448514doi: bioRxiv preprint first posted online Oct. 22, 2018; 

http://dx.doi.org/10.1101/448514
http://creativecommons.org/licenses/by-nc-nd/4.0/


 30

“min_dist” was changed to 0.05 when the reduceDimension function was called. This revealed 6 650 

additional sub clusters. 651 

 652 

To further analyze the cluster we annotated as cortex, Cluster 10 was reclustered and reanalyzed 653 

using Monocle 3 as previously described except the parameters “n_neighbors” was reduced to 654 

25. This did not reveal any sub clusters, but a trajectory was generated.   655 

 656 

Estimating doublets 657 

Single-Cell Remover of Doublets (Scrublet) was used to predict doublets in our scRNA-seq data 658 

(Available at: https://github.com/AllonKleinLab/scrublet). Using Python 3.5, Scrublet was ran 659 

using default settings as described by the example tutorial which is available as a python 660 

notebook (Available at: 661 

https://github.com/AllonKleinLab/scrublet/blob/master/examples/scrublet_basics.ipynb). The 662 

only significant change was that expected double rate was set to 0.1, in the tutorial it is 0.06.  663 

 664 

Identifying Cell Types 665 

In order to categorize the cells into cell types and to apply developmental information, a 666 

deconvolved root expression map was downloaded from AREX LITE: The Arabidopsis Gene 667 

Expression Database (http://www.arexdb.org/data/decondatamatrix.zip). Using this data matrix, 668 

the Spearman’s rank correlation was calculated between each cell in our dataset and each cell 669 

type and longitudinal annotation in the data matrix (3121 x 128 Spearman’s rank correlations 670 

total). Specifically, we looked at the correlation of 1229 highly variable genes in our dataset. 671 

These 1229 genes represents the overlap between our 1500 highly variable genes and genes in 672 

the root expression map data matrix. Cells in our dataset were assigned a cell type and a 673 

developmental label based on the annotation with which each cell had the highest correlation. 674 

(i.e. if a cell correlated highest with endodermis cells in longitudinal zone 11, then it would be 675 

called as endodermis_11).  676 

 677 

In addition to using the Spearman’s rank correlation to assign cells their cell type, a set of known 678 

marker genes derived from GFP marker lines of the Arabidopsis root were used to identify cell 679 

types based on the high gene expression of these marker genes. These genes were obtained from 680 
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(Brady et al., 2007; Cartwright et al., 2009). Specifically Supplemental Table 2 (Cartwright et 681 

al., 2009) was used. For the analysis comparing bulk RNA and pseudo bulk scRNA-seq data, the 682 

bulk data was obtained from Li et al. 2016 (Li et al., 2016); specifically, we used Table S5 from 683 

this study. Isoforms of each gene were averaged in order to be comparable to the pseudo bulk 684 

data. Lastly, using this same bulk RNA-seq data, the Pearson correlation was calculated between 685 

each cell in our dataset and each GFP marker line. Cells in our dataset were assigned to a GFP 686 

marker line based on the GFP marker line with which each cell had the highest correlation.   687 

 688 

Running Monocle 3: Identifying High Specificity Genes 689 

In order to identify differentially expressed genes between cell clusters the Moran’s I test was 690 

performed on our UMAP (principalGraphTest), with the projection being broken up into 25 x 25 691 

spatial units. Then marker genes were identified for each cluster, and each annotated grouping of 692 

clusters using a Moran’s I threshold of 0.1 and a qval threshold of 0.05. In order for a gene to be 693 

considered highly specific, it must have had a specificity rating of above 0.7.  694 

 695 

Transcription factor motif analysis 696 

Highly specific genes were identified for each cell cluster, and their promoters were analyzed for 697 

presence of transcription factor motifs. Promoters were defined as 500 base pairs upstream of the 698 

start site of each gene. Instances of each motif were identified using (Grant et al., 2011) at a p-699 

value cutoff of 1e-5 for each match. The input position weight matrices for each motif were 700 

enumerated in a previous study of binding preferences for nearly all Arabidopsis transcription 701 

factors (O'Malley et al., 2016). Motif frequencies in genes specific to each cell cluster were 702 

compared to a background set of motif frequencies across all promoters in the Arabidopsis 703 

genome to determine a log2 enrichment score. TF family genes were pulled from the gene family 704 

page of TAIR10 (https://www.arabidopsis.org/browse/genefamily/index.jsp).  705 

 706 

Running Monocle 3: Assigning Pseudotime 707 

Pseudotime analysis requires the selection of a cell as an “origin” for the pseudotime trajectory. 708 

Origin assignment was based on the Spearman’s rank assignments for each cell. The following 709 

cells were used as origins for their respective cell type trajectories: cortex_2, hair_2, 710 
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endodermis_2, nonHair_3. The get_correct_root_state() function was used to assign the root of a 711 

trajectory, and the orderCells() function was used to assign cells a pseudotime value.  712 

 713 

Calculating total mRNA 714 

After pseudotime analysis was performed on a cell cluster, cells were binned together such that 715 

each bin contained a similar number of cells and each bin represented cells from similar 716 

pseudotimes. The median total mRNA and the standard deviation of the total mRNA of each bin 717 

was then calculated.   718 

 719 

 720 

Calculating significance with the Permutation Test 721 

The permutation test was used to calculate the significance of the observed trends that the total 722 

mRNA of hair marker genes and hair specific genes increased as pseudotime increased in hair 723 

cells. To do this, 10000 random samplings of 441 genes (the number of hair marker genes), and 724 

201 genes (the number of hair specific genes) were taken respectively. Next, the median total 725 

mRNA was calculated across pseudotime for each random sampling and the slope of this data 726 

was calculated using a generalized linear model. The observed slope of the marker genes and the 727 

hair specific genes was compared to the distribution of slopes generated by 10000 random 728 

samplings. No random sampling of genes had a slope that was higher than the observed slopes 729 

generated by the hair marker genes or the hair specific genes. The significance, or the p-value, of 730 

the trend seen in the hair marker genes and the hair specific genes can then be calculated simply 731 

as the proportion of sampled permutations that have a slope that is equal to or greater than slope 732 

generated by our genes of interest. This gives us a p-value of 1/10001 or roughly 1 x 10-4. 733 

 734 

Analyzing Expression Differences Between Branches of Louvain Component 8 (Early Non-Hair) 735 

To identify genes responsible for the branching in the pseudotime trajectory of Louvain 736 

component 8 (early non-hair), the principal graph test was used to identify genes with expression 737 

specific to the side branch vs. the main branch. Genes were considered specific if it had a 738 

specificity value above 0.8. Genes were removed from the analysis if they did not have 739 

expression in at least 10% of the cells considered and a mean expression greater than 0.25.  740 

 741 
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Calculating RNA velocity 742 

We used the Velocyto R and Python packages (version 0.6 and 0.17, respectively) to estimate 743 

RNA velocity for root hair cells (La Manno et al., 2018). Matrices of spliced and unspliced RNA 744 

counts were generated from Cellranger outputs using velocyto.py CLI and "run10x" defaults. We 745 

followed the velocyto.py and velocyto.R manuals (http://velocyto.org/) and used spliced (emat) 746 

and unspliced (nmat) matrices to estimate RNA velocity. With predefined cell type annotations, 747 

we performed gene filtering with the parameter "min.max.cluster.average" set to 0.2 and 0.05 for 748 

“emat” and “nmat”, respectively. RNA velocity using the selected 996 genes was estimated with 749 

the defaults to the function gene.relative.velocity.estimates() except parameters "kCells" and 750 

"fit.quantile" which were set to 5 and 0.05, respectively. Velocity measurements for each cell 751 

were calculated as the difference between "$projected" and "$current" (with $deltaT = 1) results 752 

from the estimated velocity output. 753 

 754 

Analysis of heat shock data 755 

For each pair of cell types and for each gene cluster, we used a generalized linear model to 756 

determine the significance of an interaction between the effects of cell type and heat treatment on 757 

the normalized expression level of genes in that cluster. Then, to identify differentially expressed 758 

genes specific for every Louvain cluster we subsetted cells from every cluster that contained 15 759 

or more cells in both control and treated conditions, estimated dispersions for each subset and 760 

tested for differential gene expression identified using the differentialGeneTest function in 761 

Monocle specifying a full model of Treatment cluster and a residual model of 1. FDR values per 762 

gene were then obtained across all tests using the Bejamini-Hochberg method. The overlap of 763 

differentially expressed genes as a function of heatshock treatment between clusters was 764 

visualized using an UpsetR plot. Briefly, a binary matrix of differentially expressed genes by 765 

cluster was generated were gene-cluster combinations were set to 1 (significant) or 0 (not 766 

significant). This matrix was then passed to the upset function from the UpsetR R package 767 

specifying 9 sets and ordering by frequency. To identify whether clusters contained subtle 768 

differences in the expression of previously identified heat shock responsive genes we tested for 769 

differential gene expression across all cells and clusters and identified the intersect between 770 

differentially expressed genes obtained from single cell profiles and previously identified 771 

dynamic changes in DHS linked genes and bulk differentially expressed genes upon heat shock. 772 
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Differentially expressed genes as a function of heat-shock treatment for all cells in unison where 773 

identified using the differentialGeneTest function in Monocle specifying a full model of 774 

Treatment*UMAP cluster and a residual model of UMAP cluster. Hierarchical clustering of 775 

these DHS linked and bulk differentially expressed gene sets across control and heat-shock 776 

treated cells was performed using the pheatmap function in the pheatmap R package (version 777 

1.0.10) specifying ward.D2 as the clustering method. Genes with similar dynamics across 778 

treatment and cell types were recovered using the cutree function from the stats package in R 779 

specifying k = 8 for both DHS linked genes and bulk differentially expressed genes. To generate 780 

signatures from these 8 groups of clustered genes we log normalized expression values using a 781 

pseudocount of 1 and for each cell calculated the mean normalized expression value across genes 782 

that belong to one of the 8 gene cluster.  783 

 784 

Data Availability 785 

All sequencing data can be found on GEO at: 786 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE121619 787 

Supplemental Data 788 

Supplemental Figure 1: General tissue and data features 789 

Supplemental Figure 2: Pearson correlation to sorted RNA-seq samples 790 

Supplemental Figure 3: Marker gene expression in cell type clusters 791 

Supplemental Figure 4: Examples of tissue-specific gene expression 792 

Supplemental Figure 5: Transcription factor family expression patterns 793 

Supplemental Figure 6: Spearman’s rank correlation for each cell’s development and tissue-794 

type 795 

Supplemental Figure 7: Changes in transcription across hair development 796 

Supplemental Figure 8: Developmental trajectory of endodermal cells 797 

Supplemental Figure 9: Total RNA in cortex across pseudotime 798 

Supplemental Figure 10: Developmental expression of individual transcription factors 799 

Supplemental Figure 11: Heat-shock clustering and expression profiling 800 

Supplemental Figure 12: Conditional expression in genes with dynamic chromatin accessibility 801 

during heat-shock 802 

Supplemental Table 1: Bulk RNA-seq comparisons to single cell RNA-seq 803 
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Supplemental Table 2: Number of cells in the control vs. heatshock analysis  804 

Supplemental Data Set 1: List of Ordering/ High Dispersion Genes 805 

Supplemental Data Set 2: Correlation with Bulk Expression Data 806 

Supplemental Data Set 3: Marker Genes 807 

Supplemental Data Set 4: Novel High Specificity Genes 808 

Supplemental Data Set 5: Cluster Specific Heat shock Differentially Expressed Genes 809 

Supplemental Data Set 6: Generalized Linear Model pairwise test of significance between 810 

cortex, hair, and non-hair cells 811 
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