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Nuclear oligo hashing improves differential analysis
of single-cell RNA-seq
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Single-cell RNA sequencing (scRNA-seq) offers a high-resolution molecular view into com-

plex tissues, but suffers from high levels of technical noise which frustrates efforts to

compare the gene expression programs of different cell types. “Spike-in” RNA standards help

control for technical variation in scRNA-seq, but using them with recently developed, ultra-

scalable scRNA-seq methods based on combinatorial indexing is not feasible. Here, we

describe a simple and cost-effective method for normalizing transcript counts and subtracting

technical variability that improves differential expression analysis in scRNA-seq. The method

affixes a ladder of synthetic single-stranded DNA oligos to each cell that appears in its RNA-

seq library. With improved normalization we explore chemical perturbations with broad or

highly specific effects on gene regulation, including RNA pol II elongation, histone deacety-

lation, and activation of the glucocorticoid receptor. Our methods reveal that inhibiting his-

tone deacetylation prevents cells from executing their canonical program of changes

following glucocorticoid stimulation.
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S ingle-cell RNA sequencing (scRNA-seq) methods have
revolutionized our understanding of development1–5 and
disease6–12. Comparing transcript counts for one or more

genes between populations of single-cells is a fundamental step in
nearly all such experiments. However, current single-cell RNA-
seq protocols exhibit high levels of technical noise and
variability13. Current scRNA-seq methods detect RNA molecules
by first reverse-transcribing them into cDNA, and inefficiencies
in this conversion results in a failure to count the overwhelming
majority of RNA molecules. Moreover, RNA content varies
widely across individual cells even of the same type (e.g., as a
function of cytoplasmic volume)14. Therefore, it is often difficult
to assess whether an observed difference in the abundance of a
gene transcript between cells is due to technical or biological
variability. Moreover, inherent cell-to-cell variation in gene
expression may obscure biologically meaningful differences to
begin with. Thus, removing technical variation in transcript
counts through proper normalization across cells could greatly
improve the sensitivity of single-cell RNA-seq studies.

In order to normalize transcript abundances across cells, most
scRNA-seq analyses compute library “size factors” that scale each
cell’s counts relative to the others so that cells with few total read
counts are not ignored in favor of cells in which more molecules
were counted15,16. Such methods assume that all cells have
similar total RNA content and the variation in their levels is
purely technical. By assuming all cells in an experiment have
equal total transcript abundances, size factor normalization pre-
cludes detection of global differences in transcript production and
limits differential analysis to changes in relative abundance of
individual transcripts. To combat the limitations of size factor
normalization, a second approach compares transcript counts
against an external standard. This approach works by “spiking in”
several species of synthetic RNA molecules into the lysate of each
cell at a range of concentrations17. These synthetic transcripts are
detected along with endogenous mRNAs and by comparing the
observed synthetic RNAs to their concentrations, one can esti-
mate the efficiency of RNA detection in each cell, improving
downstream analyses18. Importantly, the use of an external
standard enables one to detect changes in global transcription19.

Using external spike-in controls with widely used scRNA-seq
platforms is impractical or cost-prohibitive for several reasons.
Droplet-based scRNA-seq instruments such as the 10X Chro-
mium require most droplets to be “empty” in order to ensure that
non-empty droplets contain only one cell. Adding a fixed amount
of external RNA to each droplet would necessitate sequencing
through the synthetic RNA in the acellular drops, vastly
increasing the cost of the experiment20. Current single-cell RNA-
seq methods based on combinatorial indexing such as sci-RNA-
seq1 are also largely incompatible with the use of spike-in RNAs.
Introducing synthetic RNAs to each cell in a controlled manner
would require physically isolating or manipulating it, eliminating
the key scalability advantage combinatorial indexing enjoys over
other methods.

To enable the use of spike-in controls in a cost-effective
manner, we developed an external molecular standard compatible
with combinatorial indexing-based scRNA-seq methods. In sci-
RNA-seq, permeabilized, fixed cells are first split across the wells
of a 96- or 384-well microtiter plate. Reverse transcription is then
performed within the intact cells or nuclei in situ using primers
that carry barcode sequences corresponding to each well, yielding
cDNA that is indexed according to the well in which it was
transcribed. Cells are then pooled and split into a new plate and
the cDNAs are indexed again by PCR. The resulting RNA-seq
library fragments can be sequenced as a pool and deconvolved by
collecting sets of reads that have the same pair of well-identifying
indexes, yielding molecular profiles of thousands of individual

cells without requiring their physical isolation. Improved versions
of the protocol introduce additional rounds of splitting, indexing,
and pooling to collect transcriptomes of millions of cells in one
experiment2. Our molecular standard is affixed within each cell
and processed as if they are endogenous mRNA molecules, which
enables normalization of transcript counts from single cells and
offers better control of technical variation in large scale scRNA-
seq experiments.

To develop a method for introducing external normalization
standards into single cells, we exploited nuclear oligo hashing, a
way of irreversibly labeling cells with synthetic DNA barcodes.
We previously introduced nuclear oligo hashing as part of sci-
Plex, in which polyadenylated single-stranded oligonucleotides
(“hashes”) are used to label nuclei and enable multiplexed single-
cell transcriptome profiling of millions of cells from thousands of
conditions in one experiment21. In a sci-Plex experiment, cells
from each condition are permeabilized and incubated with hash
oligos unique to that condition, which become trapped within the
nuclei and can be chemically fixed in place. The oligos subse-
quently serve as templates for reverse transcription reactions and
are therefore captured alongside endogenous mRNA transcripts
during sci-RNA-seq library preparation.

We reasoned that, in addition to labeling cells according to
condition, hashes could be added to cells at varying and known
concentrations and then used as an external proxy for estimating
and subtracting technical noise between individual cells.
Assuming that hash oligos become trapped in the nuclei in a
concentration-dependent manner, we designed a ladder of dis-
tinct hash oligos, with each hash species present at a unique,
predetermined concentration within the mixture (Fig. 1a). After
incubating exposed nuclei with the ladder, we then fix and collect
the nuclei and subject them to sci-RNA-seq. To normalize tran-
scriptome counts from each nucleus, we compare the observed
hash ladder counts to the concentrations for each species, con-
structing a calibration curve for each cell by fitting a negative
binomial regression model. Using the estimated parameters of
this regression, we compute a cell-specific normalization con-
stant, which should account for technical variations in sci-RNA-
seq data. We can also use these regressions to identify and discard
low-quality cells.

Results
Hash ladders can be used as spike-in controls in sci-RNA-seq
experiments. As a proof of concept, we designed a ladder
comprising eight different hash oligos, theoretical abundance
ranging from 0.1–12.8 picomoles per one million nuclei,
and introduced into a sci-RNA-seq library preparation of
HEK293T cells during the cell lysis step (Fig. 1a). As expected,
we recovered unique molecular identifier (UMI) counts from
both the endogenous mRNA molecules and the individual hash
oligos from the hash ladder, with about 12% of the sequencing
used for the hash ladder (Supplementary Fig. 1a, b). The
observed number of hash oligo UMI counts globally reflected
the expected abundance of each hash oligos in the ladder, and
the hash ladder counts between each cell in this experiment
were well correlated (median coefficient of determination
between cells: 0.966) (Fig. 1b and Supplementary Fig. 1c). For
individual cells, we constructed a calibration curve describing
the relationship between the expected and observed number of
counts of each hash molecule by fitting a negative binomial
regression model (Fig. 1c).

We hypothesized that the goodness of fit of the hash ladder
calibration curve reflects the extent of technical variability
introduced in the library preparation steps and therefore could
be used as a quality control to identify low quality cells. To test
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this hypothesis, we examined the relationship between the quality
of the fit of each cells’ regression model for its hash counts and its
overall endogenous RNA UMIs. Cells with high recovery of
endogenous RNA molecules tended to have hash regression
models with higher pseudo R-squared values than those with low
endogenous RNA UMI counts (Supplementary Fig. 1d). In
subsequent analyses, we considered cells to be low-quality if the
pseudo R-squared value of the fit was lower than 0.7 or total hash
ladder UMI count was less than 100. After filtering out low
quality cells, we obtained transcriptomes (median 7787 UMIs)
and hash ladder calibration curves (median 3108 UMIs) for 1884
cells (99.6%), with median pseudo R-squared value of 0.954
(Supplementary Fig. 1e).

We next evaluated whether the slope and intercept values of
the calibration line reflect the technical variability in the total
abundance of the endogenous mRNA molecules. Grün et al.
proposed that the slope of external, spike-in based calibration
curves captures the library preparation efficiency whereas the
intercept value captures the fraction of endogenous and spike-in

RNA used for library preparation and recovered by sequencing18.
In this experiment, hash ladders were spiked into a homogeneous
population of HEK293T cells; therefore, we hypothesized that the
technical variation in the total RNA abundance should be
captured by the hash ladder parameters. Indeed, the total RNA
abundance was positively correlated with the values of slope and
intercept when they were binned according to their values,
indicating that the observed variation in the hash ladder counts
can be used to estimate the technical variation across transcript
counts within a cell (Fig. 1d). To examine whether our external
spike-in would be applicable for more complex and hetero-
geneous biological samples, we applied our oligo hashing method
to isolated nuclei from dissociated whole zebrafish embryos. We
found that recovery of hash molecules from the zebrafish nuclei
did not vary significantly across different cell types, suggesting
that hash uptake and retention is not cell type dependent
(Supplementary Fig. 2). These results demonstrate the potential
utility of our hash ladder spike-in approach to various biological
models.

Fig. 1 A set of hash oligos can be captured within nuclei and serve as external standards in sci-RNA-seq experiments. a An experimental overview of
the hash ladder method. Nuclei are isolated from cells, fixed with a ladder of hash oligos, then processed with sci-RNA-seq. b Boxplot of hash oligo UMI
counts per cell, each hash oligo spiked in at different abundance (n= 1884 cells). c Scatter plot of expected and observed hash ladder UMI counts,
demonstrating a cell with low (left) and high (right) hash capture efficiency. d Boxplot of total RNA count of cells grouped according to the intercept and
slope of their hash ladder calibration line (n= 1884 cells). e Distribution of cell-specific size factors computed using the conventional and hash ladder
methods. f Scatter plot of normalized average expression and coefficient of variation (CV) of expressed genes in HEK293T. g Comparison of CV values
computed with the conventional and hash ladder-based normalization methods. The centerline of the boxplots in b and d indicates the median, the box
displays the first and third quartile, and the whiskers show the 1.5 interquartile range (IQR). Outliers are displayed as points.
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Next, we aimed to develop a procedure to normalize each cell’s
transcriptome profile based on the hash ladder. Conventional
normalization approaches for scRNA-seq data scale a cell’s gene
expression values by a size factor proportional to the cell’s total
recovered RNA count15,16. These approaches reduce cell-specific
technical bias by converting the raw expression data to relative
measurements under the assumption that the majority of genes are
not differentially expressed between the cells15,16. However, they
fail in cases where changes in global expression are expected across
different biological conditions22. To address this issue, we
formulated an approach to compute global cell-specific size factors
using the hash ladder parameters (see Methods). The hash ladder-
based size factors are computed using the total hash ladder UMI
count, slope and intercept of the calibration curve to correct for
cell-specific technical bias that arise from library preparation and
sequencing. Unlike conventional size factor normalization, the
hash ladder-based size factor normalization corrects for cell-
specific technical biases that arise from library preparation and
sequencing without transforming the gene expression data to
relative abundances. Size factors derived from the hash ladder were
symmetric about 1, while conventional size factors exhibited a long
right tail corresponding to cells with excess total RNA counts
(Fig. 1e). Compared with conventional normalization, when cells
were normalized using their individual hash ladder-based size
factors, the coefficient of variations (CV) were lower for almost all
genes with the hash ladder-based approach (Fig. 1f, g).

Hash ladders facilitate analysis of changes to global tran-
scription in single cells. We next evaluated whether hash ladder-
based normalization could be used to accurately detect global
changes in mRNA transcript levels. Flavopiridol inhibits the
activity of a transcription elongation factor P-TEFb, thereby
repressing mRNA transcription across the genome23,24. We
treated HEK293T cells with 300 nM of flavopiridol for increasing
amounts of time followed by sci-RNA-seq with a ladder com-
posed of 48 different hash oligos. We obtained gene expression
profiles and hash ladder calibration models for 1370 high-quality
single cells (Fig. 2a and Supplementary Fig. 3). Consistent with
inhibition of transcription elongation, cells exposed to flavopir-
idol for the longest times showed the greatest reduction in RNA
recovery per-cell (Fig. 2b), and after 24 h of flavopiridol treat-
ment, we recovered 55.90% fewer total RNA UMIs per cell on
average.

We then compared the effects of conventional and hash ladder-
based normalization approaches on pseudotime ordering and
differential expression analyses. First, we used Monocle32 to
visualize the data using Uniform Manifold Alignment and
Projection (UMAP)25 and order cells along the flavopiridol
pseudotime trajectory. The UMAP projections obtained with the
conventional and hash ladder normalization approaches were
qualitatively comparable, and both trajectories were consistent
with actual treatment times (Fig. 2c and Supplementary Fig. 4a).
We used Monocle3 to test for changes in each gene’s expression
as a function of exposure to flavopiridol. When transcript counts
were normalized with conventional size factors, Monocle3
reported an equal number of significantly upregulated and
downregulated genes, despite the well characterized global
repression of RNA Pol II transcription elongation induced by
flavopiridol26–28 (Fig. 2d). Importantly, such artifacts are
characteristic library size-based normalization29. By contrast,
hash ladder-based normalization yielded 406 more downregu-
lated genes and 31 fewer upregulated genes (Supplementary
Fig. 4b, c and Supplementary Table 1). As an example,
flavopiridol is known to block the expression of genes involved
in cell adhesion30,31. Unlike the results from conventional

normalization, the hash ladder normalization captured a
consistent decreasing expression of genes known to be involved
in endothelial cell adhesion (CD151 and LAMC2) across
flavopiridol treatment time (Fig. 2e and Supplementary Fig. 4d).
Ultimately, the magnitude of log2 fold changes (24 h vs. vehicle)
computed with hash ladder normalized expression values was on
average higher for downregulated genes and lower for upregu-
lated genes compared to that of conventional normalized
expression values, suggesting a general improvement in sensitivity
to changes in transcript abundance in this system (Fig. 2f and
Supplementary Fig. 4e). The observed effect sizes of differentially
expressed genes were further corroborated when we repeated the
FP time course with bulk RNA-seq measurements normalized
with ERCC spike-ins (Supplementary Fig. 5). Altogether, these
results demonstrate the value of unbiased external normalization
for detecting global changes in transcription, enabled through the
use of nuclear hash ladders in single cell RNA-seq experiments.

Histone deacetylase inhibition transiently reduces global
transcript levels. Next, we sought to use hash ladders to investigate
the role of histone deacetylases (HDAC), an important class of
chemotherapeutics, in regulating transcription. Histone deacetylases
remove acetyl groups from histones and other proteins and are
thought to act as transcription repressors. Inhibition of HDACs
leads to cell-cycle arrest and hyperacetylation of histones, altering
the relative expression levels of many genes32, but the mechanisms
by which these genes are regulated has not been fully characterized.
In principle, hyperacetylation of histones could facilitate access of
transcriptional machinery to many genes and broadly increase
transcription across the genome. Chromatin also may also serve as a
reservoir of acetate, and acetate flux through chromatin could help
the cell buffer against changes in available acetate or pH33. We
recently demonstrated that HDAC inhibition (HDACi) deprives
cells of acetyl-coenzyme A (acetyl-CoA), and cells compensate by
activating alternative pathways for the biosynthesis or import of
acetyl-CoA precursors (e.g., citrate) in dose-dependent manner21.
Individual cells exhibited dramatically heterogeneous responses to
HDACi. For example, even at doses that kill a substantial fraction of
cells, we captured many that were transcriptionally indistinguish-
able from vehicle-treated controls. Therefore, gene expression
changes in response to HDACi (e.g., activation of tumor sup-
pressors) could be a consequence of a cellular “metabolic crisis”
characterized by acetyl-CoA deprivation. As acetyl-CoA is impor-
tant for many cellular processes including transcription, HDACi
might also lead to a reduction in global transcription. We therefore
sought to disentangle the relative contributions of changes to
chromatin structure and cellular metabolism to gene regulation in
response to HDAC inhibition.

To assess the effects of HDACi on global transcript levels in
single-cells, we first performed a time-series HDAC inhibition
experiment to estimate the time point at which acetyl-CoA
deprivation is first detectable. We treated A549 cells with one of
two HDAC inhibitors (abexinostat or pracinostat) for 0, 0.5, 1, 3,
6, 12, or 24 h and performed sci-Plex with the hash ladder,
obtaining transcriptomes and hash ladder calibration lines for
1548 cells (n= 2 replicates, Supplementary Fig. 6). As with the
flavopiridol time-course experiment, both normalization
approaches ordered cells according to their treatment time
(Fig. 3a). When viewed with conventional normalization, total
mRNA counts remained stable over time. In contrast, the hash
ladder-based normalization revealed a dramatic but transient
reduction of total RNA levels along the HDAC inhibitor
pseudotime trajectory (Fig. 3b). Over this trajectory, we detected
an early 60.7% reduction in mRNA levels in cells at the nadir, but
after 24 h of treatment with HDACi, cells had fully restored
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mRNA levels. Interestingly, the transient reduction in mRNA
levels was not detected when the single-cell data were aggregated
by discrete treatment times or in bulk RNA-seq data, likely owing
to and consistent with the large heterogeneity in cellular response
to HDAC inhibition we previously observed21,34 (Supplementary
Fig. 7).

Nevertheless, differential expression analysis revealed that cells
at later timepoints had undergone dramatic changes in gene
expression (Supplementary Table 2). Hierarchical clustering of
446 differentially expressed genes revealed four kinetically distinct
groups (Fig. 3c). Gene set enrichment analysis35 using Gene
Ontology36 and MSigDB hallmark37 gene groups showed
enrichment of genes involved in cell cycle, cellular metabolism,

and immune response, consistent with previous findings21,38,39

(Supplementary Table 3). This analysis suggests that despite
returning to normal mRNA levels, HDAC-inhibited cells shift
from a proliferative gene expression program to one that helps
compensate for acetyl-CoA deprivation. Compared to the
conventional approach, hash ladder normalization recovered a
greater number of differentially expressed genes previously
identified from a larger, published sci-Plex experiment, including
upregulated genes involved in acetyl-CoA biosynthesis (Supple-
mentary Fig. 8). Moreover, in line with established perturbations
of proliferation by HDACi40,41, we observed a group of HDACi-
treated cells with altered gene expression relating to cell cycle
effects (Supplementary Fig. 9).

Fig. 2 Hash ladder expands our ability to detect global reduction in transcript levels caused by flavopiridol. a Overview of the experiment.
HEK293T cells were treated with flavopiridol for different periods of time and labeled with a ladder of hash oligos and additional hash oligo for multiplexing
prior to sci-RNA-seq preparation. b Boxplot showing total RNA UMI counts for cells treated with flavopiridol at different time points (n= 1370 cells).
c UMAP projections of flavopiridol treated HEK293T cells colored by treatment time and normalized by conventional (left) and hash ladder (right) size
factors. d Barplot showing number of differentially expressed genes in response to flavopiridol using the conventional and hash ladder normalization
approaches. e Conventional and hash ladder normalized expression levels of CD151 and LAMC1 at different flavopiridol treatment times. Bars represent the
percentage of cells with normalized expression value greater than 1, and the error bars show the 95% confidence interval obtained using a bootstrap
method (n= 100 bootstrap samples). f Violin plot showing the ratio of effect size estimates of common differentially expressed genes computed with hash
ladder vs. conventional normalization. The centerline of the boxplots in b and f indicates the median, the box displays the first and third quartile, and the
whiskers show the 1.5 IQR. Outlier values are displayed as points.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30309-4 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:2666 | https://doi.org/10.1038/s41467-022-30309-4 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


We next attempted to disentangle the direct impact of
HDACi on chromatin acetylation and transcription from the
secondary effects on the transcriptome arising from acetyl-CoA
deprivation. Reasoning that there might be a window of time
where HDACi prevented histone deacetylation but acetyl-CoA
was not yet depleted, we sought to identify the time at which
metabolic-driven effects of HDAC inhibition set in. To estimate
the onset of acetyl-CoA deprivation, we assessed the expression
patterns of 188 upregulated genes involved in cellular
metabolism. Using the HDAC inhibitor pseudotime trajectories
from Monocle3, we defined the pseudotime at which each gene
rose appreciably above its baseline untreated level (Fig. 3d and

Supplementary Fig. 8d). The median pseudotime across all 188
genes corresponded to a position of the trajectory populated by
cells harvested at approximately six hours following exposure to
HDAC inhibitor (Fig. 3e). Our estimated onset of acetyl-CoA
deprivation was consistent with the expression patterns of
genes that compensate for acetyl-CoA deprivation, including
those involved in acetyl-CoA biosynthesis (ACLY, ACSL3),
citrate metabolism (IDH1), and glucose uptake (SLC2A3)
(Fig. 3f). Importantly, the nadir of cellular total mRNA levels
preceded acetyl-CoA deprivation, suggesting that reduction in
transcript levels is not simply a consequence of the “metabolic
crisis” that arises from inhibiting histone deacetylases.

Fig. 3 Histone deacetylase (HDAC) inhibitor time course trajectory pinpoints onset of acetate starvation. a UMAP projections of HDAC inhibitor
(abexinostat and pracinostat) treated A549 cells (n= 1548 cells over two replicates) colored by treatment time and normalized by conventional (left) and
hash ladder (right) size factors. The HDAC inhibitor trajectories are overlaid onto the UMAP projections. b Scatterplot showing total RNA UMIs as a
function of pseudotime position obtained from the conventional (left) and hash ladder (right) size factor normalized data. c Hierarchical clustering of 446
of 1485 highly differentially expressed genes along the HDAC inhibitor pseudotime trajectory (likelihood ratio test, FDR < 1 × 10−10 and number of
expressed cells > 100). Rows represent row centered and z-scaled dynamics of gene expression. d Histogram of pseudotime points at which the centered,
z-scaled expression value is equal to zero for upregulated genes involved in cellular metabolism (n= 188 genes). e Pseudotime distribution of HDAC
inhibitor treated cells at each treatment time point. The red dotted line represents the median pseudotime of distributions from Fig. 3c. f Hash ladder
normalized expression of genes involved in cellular metabolism and cell cycle across pseudotime, marked by onset of acetate starvation (dotted red line).
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Short-term histone deacetylase inhibition attenuates the glu-
cocorticoid response to dexamethasone. We next sought to
investigate whether HDACi prevented cells from transcriptionally
responding to external stimuli. Glucocorticoid receptor (GR), a
transcription factor that modulates diverse biological processes
such as stress and inflammatory responses, directly interacts with
histone deacetylases42. We examined the ability of cells to mount
a transcriptional response to synthetic glucocorticoid agonist
dexamethasone (DEX), both before and after onset of acetyl-CoA
deprivation induced by HDAC inhibitors. We treated A549 cells
with one of two HDAC inhibitors (abexinostat or pracinostat) for
either 4 or 24 h prior to DEX treatment and performed sci-Plex
with a hash ladder included for normalization (n= 2 replicates,
Fig. 4a and Supplementary Figs. 10 and 11). Since we observed
that upregulation of enzymes used to compensate for acetyl-CoA
deprivation occur after 6 h of HDAC inhibitor treatment, we
reasoned that inhibiting HDACs for only 4 h would allow us to
distinguish direct effects of histone hyperacetylation from sec-
ondary metabolic effects on the cell. In addition to vehicle-treated
controls for each condition, we performed the experiment using
two doses (1 μM or 10 μM) of each HDAC inhibitor to consider
dose-dependent effects. After filtering out low-quality cells, we
obtained gene expression profiles (median 3816 UMIs/cell) and
hash ladder calibration lines (median 260 UMIs/cell) for 3710
high-quality cells.

Consistent with distinct transcriptional effects before and after
metabolic effects of HDAC inhibitor treatment, clustering of hash
ladder normalized sci-RNA-seq profiles was mainly driven by the
duration of HDAC inhibitor treatment, rather than by HDAC
inhibitor dose (Fig. 4b). In the absence of HDAC inhibitor,
vehicle and DEX treated cells formed separate clusters in the
UMAP embedding, with DEX treatment increasing the expres-
sion of GR activated genes, including ANGPTL4, FKBP5, and
TSC22D3 (Supplementary Fig. 12). By contrast, cells that received
HDAC inhibitor prior to DEX treatment intermixed with those
that only received the HDAC inhibitor treatment, suggesting they
failed to mount a strong DEX-induced glucocorticoid response
(Fig. 4b). Moreover, the loss of a distinguishable response to
dexamethasone was seen after just 4 h of HDACi treatment,
suggesting that failure to mount a GR response is not solely due
to acetyl-CoA deprivation.

We next performed differential gene expression analysis
(Supplementary Tables 4 and 5) amongst the various treatment
groups. Of the 171 DEX-responsive genes we identified by
comparing DEX-treated to untreated cells, only 67 (39%) and 57
(33%) genes properly responded to DEX in cells which had been
treated with an HDAC inhibitor for 4 and 24 h, respectively
(Fig. 4c). These genes included those involved in hypoxia
response and tumor necrosis factor alpha (TNF-A) signaling
pathways (Supplementary Fig. 13a, b). The DEX response
appeared primarily impacted by the duration of HDAC inhibition
rather than dose, as we observed no genes with significant dose-
dependent changes in transcriptional outcome between cells
pretreated with 1 μM and 10 μM of HDACi.

We then assessed whether the magnitude of transcriptional
changes induced by DEX is impacted by HDAC inhibition.
Indeed, the DEX-induced transcriptional changes were attenuated
by prior HDAC inhibition for 93% of the genes, suggesting a
severely compromised activation of GR response by DEX in
HDAC inhibitor treated cells (Fig. 4d). Interestingly, the
attenuation of the DEX response was more severe after the 4 h
HDAC inhibitor treatment than after 24 h of exposure (Supple-
mentary Fig. 13c, d). For example, the GR-induced activation of
TSC22D3, a glucocorticoid-induced transcriptional regulator of
anti-inflammation43, was significantly impaired after 4 h HDAC
inhibitor treatment (log2 fold change of 1.65), but only slightly

impaired after 24 h HDAC inhibitor treatment (log2 fold change
of 3.43). In the case of TSC22D3, the recovery of GR-inducibility
after extended HDACi resembles its behavior during inflamma-
tory signaling, when activation of TSC22D3 coincides with
prolonged hyperacetylation of histones44–46 and metabolic
reprogramming47.

HDACi-treated cells failed to regulate a majority of GR
response genes, even after only 4 h of exposure to inhibitors,
suggesting that disrupting histone acetylation dynamics is
sufficient to interfere with the glucocorticoid response (Fig. 4e).
Broadly, these genes were enriched for roles in managing reactive
oxygen species, which are known to be affected by HDAC
inhibition48–50 (Supplementary Fig. 14). Unresponsive genes also
included G-protein coupled receptors associated with cytoskele-
ton reorganization, concordant with previous reports of HDAC
inhibition preventing glucocorticoid-induced hypertension51 and
changes in microtubule dynamics52. Interestingly, we observed
various classes of effects on these unresponsive genes suggesting
multiple ways in which HDACi might interfere with the DEX
response (Supplementary Fig. 15). GR-regulated genes that fail to
respond after 4 h treatment with HDACi but do respond at 24 h
included several members of the complement system (Fig. 4f).
This is consistent with the effects of HDAC inhibition in
regulating innate immune pathways38,53,54. In contrast, cells
treated for only 4 h successfully regulated genes involved in fatty
acid metabolism, while cells treated for 24 h did not, suggesting
that acetyl-CoA deprivation may interfere with their regulation.
Importantly, fatty acid metabolism can contribute to acetyl-CoA
synthesis55, raising the possibility that the cells’ compensation for
acetyl-CoA deprivation may override their response to DEX.

Discussion
Here, we show how a ladder of single-stranded DNA molecules
can be incorporated into sci-RNA-seq experiments as an external
normalization control, revealing changes in global transcript
levels and the expression of individual genes. By affixing a set of
hash oligos at predetermined concentrations to each nucleus, we
demonstrate that a calibration curve can be constructed for
individual cells, controlling for cell-to-cell technical variation
introduced during library preparation. As a demonstration of the
utility of hash ladders in single cell transcriptomics, we were able
to dramatically enhance the detection of global repression in
transcription caused by cyclin-dependent kinase inhibitor
flavopiridol.

We then applied the hash ladder normalization approach to
reveal dynamic changes in global transcriptional output and
pinpoint the onset of acetate deprivation caused by histone dea-
cetylase treatment. We anticipated that if anything, hyper-
acetylated chromatin in HDAC-inhibited cells would facilitate
transcription, leading to increased expression of many genes.
Surprisingly, our analysis showed that inhibiting histone deace-
tylases transiently leads to a global reduction in mRNA output
and interferes with the cell’s ability to mount a transcriptional
response to dexamethasone treatment. Both effects of HDACi
treatment preceded the onset of acetyl-CoA deprivation, sug-
gesting that they are not simply a consequence of metabolic
changes in the cell. Taken together, these results lend support to
the notion that chromatin serves as a reservoir of acetate for the
cell, and that acetate flux through chromatin is important for cell
metabolism and potentially transcription of many genes21,34.

Our analysis suggests that hash ladder-based normalization is
particularly beneficial when changes in global transcriptional
levels are expected (e.g., flavopiridol). By contrast, when only a
small number of genes were affected by a treatment, conventional
normalization performed similarly to the hash ladder-based
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Fig. 4 HDAC inhibition prevents mounting of dexamethasone (DEX) response. a Overview of the experiment. A549 cells were treated with HDAC
inhibitors for different periods of time and dose prior to two hour DEX treatment. These cells were subjected to sci-Plex with the addition of the hash
ladder. b UMAP projections of vehicle- and DEX- treated A549 cells (n= 3710 cells over two replicates) in the absence and presence of HDAC
inhibitors using the hash ladder normalized expression values. c Percentage of DEX response genes that do not respond to DEX treatment with prior
HDAC inhibitor treatment. d Scatter plot comparing log2 fold changes of DEX responsive genes (DEX/vehicle) without and with preceding HDAC
inhibitor treatment. Colors respond to the duration of HDAC inhibitor treatment. e Venn diagram of genes that do not respond to DEX at different
HDAC inhibitor treatment times. f Hash ladder normalized expression of DEX genes that do not respond in cells that received 4 h (top) and 24 h
preceding HDAC inhibitor treatment (bottom).
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normalization (e.g., HDACi and HDACi/DEX). However,
because it is often difficult or impossible to predict the outcome of
previously unseen perturbations, the hash ladder provides a
robust normalization approach, unbiased by a priori assumptions.

Hash oligos are a versatile tool for single-cell transcriptome
sequencing. As demonstrated in our HDAC inhibitor time course
and dexamethasone experiments, hash oligos can easily be used
both for sample multiplexing and as external standards in single-
cell combinatorial indexing-based methods. This approach
therefore enables gene expression profiling of many experimental
conditions, including those with heterogeneous starting popula-
tions, with improved normalization. The dynamic range of a hash
ladder can be easily tuned to assess the limits of detection and be
used to model noise structure in scRNA-seq data13,18. Further-
more, hash oligos can be captured using aldehyde and alcohol
fixatives (MeOH; unpublished result); therefore, hashing could be
implemented in other scRNA-seq platforms that are compatible
with chemical fixation.

Importantly, the hash ladder spike-in approach assumes that
uptake of hash oligos is uniform across all nuclei in the experi-
ment, and it is important to consider situations where this might
be violated, such as with differences in cell cycle stage, cell size
and/or cell or nuclear permeability. While it is challenging to
correlate permeability and hash uptake, we believe that the effect
of cell cycle/size on hash ladder normalization is minimal and
found that an observed difference in hash uptake did not sig-
nificantly alter differential expression analysis between these cells
(Supplementary Figs. 16 and 17).

In summary, the use of a hash ladder offers an unbiased and
versatile normalization tool that is simple, low-cost, and com-
patible with the highly scalable single-cell combinatorial indexing
RNA sequencing method.

Methods
Cell culture. A549 (CCL-185 from ATCC) and HEK293T (CRL-3216 from ATCC)
cells were cultured in DMEM (Gibco) media containing 10% fetal bovine serum
(Invitrogen) and 1% penicillin and streptomycin (Gibco) at 37 °C with 5% CO2.

For the flavopiridol time course experiment, HEK293T cells were seeded onto a
6-well culture plate at a density of 4 × 105 cells per well in 2 mL of media. For the
HDAC inhibitor time course and HDAC inhibitor and dexamethasone co-
treatment experiments, A549 cells were seeded onto a 96-well culture plate at a
density of 2.5 × 104 cells per well in 100 μL of media.

Drug treatment. Cells were grown for 24 h after they were seeded onto the cell
culture plates. For the flavopiridol time course experiment, 0.9 μL of 1 mM fla-
vopiridol (Selleck Chemicals) was added to each 6 well to attain a final con-
centration of 300 nM. For the HDAC inhibitor time course experiment, 1 μL of
1 mM of either abexinostat (Selleck Chemicals) and pracinostat (Selleck Chemicals)
was added to each 96 well to attain a final concentration of 10 μM. Similarly, for the
HDAC inhibitor and dexamethasone co-treatment experiment, we added 1 μL of
100 μM or 1 μL of 1 mM of either abexinostat or pracinostat to each 96 well to
attain a final concentration of 1 and 10 μM, respectively. Dexamethasone (Selleck
Chemicals) was added at a concentration of 100 nM (1 μL of 10 μM) two hours
before the end of the HDAC inhibitor treatment. DMSO (10%) was used as a
vehicle for flavopiridol and HDAC inhibitor treatments and ethanol (10%) was
used as a vehicle for dexamethasone treatment. The HDACi timecourse and
HDACi/DEX co-treatment experiment was performed in duplicates, and the fla-
vopiridol timecourse experiment was only performed once.

Design of hash ladder. The structure of hash oligos is previously described by
Srivatsan et al.21. The capture of hash ladder by nuclei is determined by factors
including, but not limited to, sample processing, total RNA content, and sequen-
cing depth. For mammalian cell lines, we estimate that the nuclear capture rate of
hash oligos ranges from 0.1–1%. We empirically determined that the ladder should
be constructed so that approximately 6–8 million hash molecules are spiked in for
each cell or nucleus (assuming that each cell/nucleus takes up equal amounts of
hash molecules in the solution) to obtain a median hash ladder UMI count of
1000–5000. For the pilot experiment, we used a hash ladder consisting of 8 dif-
ferent hash oligos, covering from 0.1–12.8 picomoles per one million nuclei. For
the rest of our experiments, we spiked in a hash ladder consisting of 48 different
hash oligos, ranging from 0.25 attomoles −20 femtomoles for 100,000 nuclei
(flavopiridol) and for each 96 well (HDACi and dexamethasone). The detailed

information on how the hash ladder mixture can be made is provided in Sup-
plementary Table 6.

Cell harvest, nuclei isolation, and hash oligo capture. To harvest the cells, media
was removed and cells were washed with DPBS (Gibco) and dissociated off the
plate using trypLE (Gibco). Trypsinization from trypLE was quenched with an
equal volume of ice cold FBS containing DMEM media. Cells were pelleted by
centrifugation at 500 × g for 5 min, washed with ice cold DPBS, and resuspended in
ice cold DPBS. For the initial proof of concept experiment and flavopiridol time
course experiments, cells were then counted with a hemocytometer using 0.4%
Trypan Blue. Approximately 100,000 cells were pelleted at 500 × g for 5 min and
resuspended in 1 mL of ice cold lysis buffer (10 mM Tris-HCl, pH 7.4, 10 mM
NaCl, 3 mM MgCl2, 0.1% IGEPAL CA-630) supplemented with 1% Superase
RNase Inhibitor (Invitrogen) and 4.8 μL of the hash ladder mixture. After lysis with
gentle pipetting, cells were fixed by addition of 4 mL of fixation buffer (5% par-
aformaldehyde in 1.25X PBS) on ice for 20 min. After the cells were fixed, they
were washed with 1 mL of nuclei suspension buffer (10 mM Tris-HCl, pH 7.4,
10 mM NaCl, 3 mM MgCl2, 1% Superase RNase Inhibitor, 1% 0.2 mg/mL NEB-
Next BSA) and resuspended in 100 μL of nuclei suspension buffer (NSB).

For the HDAC inhibitor time course and HDAC inhibitor and dexamethasone
co-treatment experiments, cells were pelleted at 500 × g for 5 min and transferred
to a 96-well V-bottom plate containing 100 μL of ice cold lysis buffer supplemented
with 1% Superase RNase Inhibitor, 400 femtomoles of hash ID oligos and 4.8 μL of
the hash ladder mixture in each well. Cells were then lysed with gentle pipetting,
and 200 μL of fixation solution was added to each well and incubated on ice for
20 min. After fixation, the nuclei were pooled into a trough and transferred into a
50 mL conical tube. Nuclei were then pelleted by centrifugation at 500 × g for 5 min
and washed with 1 mL of NSB twice before resuspending in 100 μL of NSB.

Preparation of sci-RNA-seq libraries. The sci-RNA-seq libraries were prepared
following the protocols as previously described by Cao et al.2 and Srivatsan et al.21.
Isolated and hashed nuclei were permeabilized in 500 μL of permeabilization buffer
(0.25% Triton-X in NSB) for 3 min on ice and then washed once with 1 mL of NSB.
After the wash step, nuclei were pelleted at 500 × g for 5 min, and resuspended in
100 μL of NSB. The nuclei were then counted using a hemocytometer, and the
concentration of the nuclei was adjusted to 2.5 million cells per mL. To each well of
skirted twin.tec 96 well LoBind plate (Fisher Scientific, cat no. 0030129512), a
mixture of 5000 nuclei, 0.25 μL of 10 mM dNTP mix (Thermo Fisher Scientific, cat
no. R0193), and 1 μL of 25 μM uniquely indexed oligo-dT1 was added, followed by
denaturation at 55 °C for 5 min and immediate reannealing on ice. Next, 1.75 μL of
reverse transcription mix (1 μL of Superscript IV first-strand buffer, 0.25 μL of
100 mM DTT, 0.25 μL of Superscript IV (Thermo-Fisher) and 0.25 μL of RNA-
seOUT (Invitrogen) recombinant ribonuclease inhibitor) was added to every well
incubated at 55 °C for 10 min and placed on ice. Reverse transcription was stopped
by adding 5 μL of stop solution (40 mM EDTA and 1mM spermidine) to each well.
Nuclei were then pooled using wide bore tips for transfer to a trough, stained with
DAPI at a final concentration of 3 μM, and finally transferred to 5 mL flow cyto-
metry tube (Falcon) through the 0.35 μm filter cap. FACS Aria II cell sorter (BD)
was used to sort 25–50 nuclei per well into 96 well LoBind plates containing 5 μL of
Buffer EB (Qiagen). Nuclei were gated based on DAPI-A vs DAPI-H to ensure
sorting of single nuclei.

After sorting, second strand synthesis was performed by adding 0.75 μL of
second strand mix (0.5 μL of mRNA second strand synthesis buffer and 0.25 μL of
mRNA second strand synthesis enzyme, New England Biolabs) to each well and
incubating at 16 °C for 180 min. Tagmentation was performed by adding 6 μL of
tagmentation mix (0.02 μL of a custom TDE1 enzyme in 6 μL 2× Nextera TD
buffer, Illumina) to each well and incubating for 5 min at 55 °C. The tagmentation
reaction was stopped by adding 12 μL of DNA binding buffer (Zymo) and
incubating for 5 min at room temperature. Each well was then purified by using
36 μL (1.5X) of Ampure XP beads (Beckman Coulter), eluted in 16 μL of EB buffer
and transferred to a new 96 well LoBind plate.

Each well was mixed with 2 μL of 10 μM indexed P5 primer, 2 μL of 10 μM
indexed P7 primer1 and 20 μL of NEBNext High-Fidelity master mix (New
England Biolabs) and PCR was carried out using the following program: 72 °C for
3 min, 98 °C for 30 s and 19 cycles of 98 °C for 10 s, 66 °C for 30 s and 72 °C for
1 min followed by a final extension at 72 °C for 5 min. The PCR products were then
all pooled, concentrated using a DNA clean and concentrator kit (Zymo) and
purified with 0.8X Ampure XP beads. Library concentrations were measured by
Qubit (Invitrogen) and fragment sizes were visualized using TapeStation HS D1000
DNA Screen tape (Agilent). Libraries were sequenced on a Nextseq 500 platform
(Illumina) using a high output 75 cycle kit (Read 1: 18 cycles, Read 2: 52 cycles,
Index 1: 10 cycles and Index 2: 10 cycles).

Pre-processing of sci-RNA-seq data. The sci-RNA-seq libraries were processed
according to the protocol described in ref. 21. First, Illumina reads were demulti-
plexed using bcl2fastq (v2.20). Custom scripts were used to extract barcodes that
match reverse transcription (RT) indices within Levenstein distance cutoff of 2.
After RT barcode matching, poly(A) sequences were trimmed using trim-galore,
and the trimmed reads were aligned to hg38 using STAR aligner (v2.5.2b) with
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default settings. The aligned reads were filtered with MAPQ ≥ 30, deduplicated, and
collapsed by unique molecular identifiers (UMIs). The deduplicated reads were
then assigned to genes using bedtools intersect function with an annotated human
gene model. Knee plots were then generated from UMI counts per cell barcode to
filter out true cell barcodes from debris. Thresholds were selected on a per-
experiment basis and gene expression profiles from cell barcodes with total UMI
counts greater than the knee threshold were used to generate a CDS object for
downstream analysis.

Sample assignment with ID hash oligos. The hash IDs were assigned sample
labels as described in ref. 21. In summary, reads from hash oligos were extracted
from the demultiplexed read files by matching the first 10 bp of read 2 to the hash
barcodes with the Levenstein distance of 2 and looking for trailing poly(A)
sequences from position 12–16 bp. These reads were deduplicated and collapsed by
UMIs, which were then used for sample assignment and hash ladder calibration
line construction.

Nuclei with hash UMIs that did not significantly vary from a background hash
UMI distribution were filtered out (FDR < 0.01). The background distribution was
estimated for each experiment by averaging the hash UMIs from cell indices that
are likely from debris fragments. The debris cells were obtained by filtering for cell
indices with fewer than an empirically determined RNA UMI cutoff. To assign
sample labels and filter out doublets, enrichment ratios were calculated for each cell
by taking the ratio of the most abundant vs. the second most abundant hash ID. As
described in ref. 21, the enrichment ratio cutoff is determined empirically and
carefully chosen to separate unlabeled and singly labeled nuclei. For the flavopiridol
and HDAC inhibitor time course and DEX co-treatment experiments, we used the
enrichment cutoff of 10.

Construction of hash ladder calibration curves. Hash counts from the ladder
were considered separately from the hashes which label a cell’s sample (described
above). After extracting hash read counts for each nucleus, nuclei were required to
have a minimum number of unique ladder molecules recovered, as well as a total
hash ladder UMIs > 100 for downstream analysis. For the experiments performed
with the ladder of 48 hash oligos, nuclei with fewer than 10 unique hash ladder
molecules were discarded. The observed read counts for each hash oligo in the hash
ladder were then compared against the expected number of reads to construct a
hash ladder calibration curve for each cell. The expected or theoretical abundance
of each hash oligo was estimated by dividing the number of molecules in the ladder
by the number of starting cells in each condition. A negative binomial regression
model was then fit to each calibration line to obtain the slope and intercept values.
To isolate cells with high quality hash ladder calibration lines, nuclei with pseudo
R-squared value of less than 0.7 were removed.

Computation of cell-specific hash ladder-based size factor. To normalize for
cell-specific bias in scRNA-seq data, gene expression values are often divided by its
cell-specific size factor. Conventionally, cell-specific size factors are computed by
taking the geometric mean of the log total RNA UMIs from all cells in the
experiment15,16. Therefore, conventional size factors are proportional to the cell’s
total RNA UMIs:

f i � xi ð1Þ

where fi is conventional size factor value and xi is total RNA UMI counts for cell i.
Here, we propose an alternative method to compute cell-specific size factors

using the hash ladder parameters:

f i
0 � log

zi
hi

� �
� mi

�bi
� ri ð2Þ

where f i
0 is the size factor derived from the hash ladder, zi is total hash UMI count,

hi is the duplication rate for hash oligos, mi is the slope of the hash ladder
calibration line, bi is the intercept, and ri is the RNA duplication rate for cell i. In
our analysis, the slope and intercept values are derived from fitting a negative
binomial regression line to the expected and observed hash ladder counts.

With the assumption that the nuclear capture rate of the hash oligos are
approximately equal across cells, we reasoned that technical variation should
mostly account for the differences in the total number of observed hash UMIs. The
distribution of total hash UMIs were log-normally distributed and therefore
logarithm of total hash UMIs used for the calculation. Additionally, we reasoned
that the slope and intercept values of the hash ladder calibration curves reflect the
cells’ library preparation efficiency and the amount of input RNA/hash ladder
molecules used for the library and sequencing18, respectively. For example,
variations in reverse transcription (RT) reaction efficiency will influence the
capture of lowly expressed RNA molecules (slope) and systematic errors in
pipetting and pooling steps will affect the number of molecules captured in each
reaction (intercept). The duplication rates of the hash oligos and transcriptomes
were included in the size factor calculation to correct for differences in sequencing
depth between samples and multiple sequencing runs. As a result, nuclei that
exhibit high technical variation as indicated by the hash ladder parameters would
have low size-factor values to compensate for low library preparation efficiency.

Dimensionality reduction and pseudotime ordering. We analyzed our sci-RNA-
seq data using Monocle32. For dimensionality reduction, gene expression profiles
were first divided by the cell-specific size factors (conventional or hash ladder) and
log transformed after adding a pseudocount of 1. The normalized gene expression
profiles were then reduced to 50 principal components with principal component
analysis (PCA) and then they were further reduced to two-dimensional Uniform
Manifold Approximation and Projection (UMAP) space using the reduce_di-
mension function in Monocle3.

For the flavopiridol and HDAC inhibitor time course experiments, cells were
clustered with the Louvain community detection method56. As described by Cao
et al.2, the cells ordered along a drug treatment pseudotime trajectory using the
functions learn_graph, and order_cells in Monocle3. The exact details of the
function parameters used for each experiment can be found in the provided code.

Differential expression analysis. To perform differential expression analysis, we
used the fit_models function in Monocle3. For each experiment, we performed
differential expression analysis twice, using each normalization method.

For the flavopiridol and HDAC inhibitor time course experiments, we fit the
normalized gene expression profiles using the model:

logðyiÞ � t0 ð3Þ
where yi is the negative binomial variable that captures the UMI count of gene i
and t′ represents pseudotime values that are smoothed via a natural spline function
with 3 degrees of freedom to capture the dynamic expression patterns along the
pseudotime trajectory.

For the HDAC inhibitor and dexamethasone co-treatment experiment, we
extracted DEX-induced genes using the non-HDAC inhibitor treated cells with the
model:

logðyiÞ � d ð4Þ
where d is a binary variable that indicates whether a cell has received the
dexamethasone treatment. A gene is interpreted as DEX responsive if it has a
significant DEX term (FDR < 0.05). To evaluate whether the transcriptional
changes induced by DEX are prevented by differential cellular effect of HDAC
inhibition, we performed differential expression analysis on 4 and 24 h HDAC
inhibitor treated cells separately, using the same model formula as above with the
additional terms that reflect the dose and drug information of the HDAC
inhibitors.

To determine whether the HDAC inhibitor treatments alone alter the
expression of the DEX response genes, we separately analyzed the cells that have
received the HDAC inhibitor at each timepoint (4 and 24 h) using the model
formula:

logðyiÞ � d ð5Þ
Additionally, we included terms such as PCR plate identity and HDAC inhibitor
drug information, to the model to further regress out technical batch effects.

Visualization and clustering of HDAC inhibitor pseudotime dependent genes.
To visualize and cluster the differentially expressed genes that vary along the
HDAC inhibitor pseudotime trajectory, we first identified DE genes with FDR < 1e
−10 and number of expressed cells >100. The smoothed pseudotime fitted gene
expression values were centered and z-scaled, and the resulting gene expression x
pseudotime matrix was visualized and clustered with the ward.D2 method using
the pheatmap package in R.

Gene set enrichment analysis. We used the runGSAhyper function from the R
piano package to perform gene set enrichment analysis on a list of differentially
expressed (DE) genes. Briefly, runGSAhyper function uses Fisher’s exact test to
evaluate whether the DE genes are enriched for particular gene sets against the
background of expressed genes in the experiment. For our analysis, we used the
Gene Ontology biological processes and MSigDB hallmark gene set collections, and
we used the false discovery rate threshold of 0.05 for calling enriched gene sets.

Determination of onset of acetyl-CoA deprivation. To determine the onset of
acetyl-CoA driven cellular metabolic crisis due to histone deacetylase inhibition, we
assessed the expression pattern of upregulated genes that are involved in metabolic
processes such as glucose, alcohol, and fatty acid metabolism. Specifically, we fil-
tered for the upregulated HDAC inhibitor pseudotime dependent genes using the
metabolic process Gene Ontology terms. We then centered and z-scaled the
pseudotime fitted expression patterns of these genes. We defined the time point at
which the centered, z-scaled expression value exceeds zero as the onset of acetyl-
CoA metabolic crisis. We determined this time point for all the upregulated
metabolic genes and used the median time point as a global estimate. We followed
this procedure for both the hash ladder normalized and conventional size factor
normalized expression values.

Annotation of unresponsive DEX genes in presence of HDAC inhibitors. By
performing differential expression analyses, we identified a set of normally DEX-
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induced genes that become unresponsive to Dex as a consequence of HDAC
inhibition. We also identified a set of normally DEX-induced genes that are
altered due to HDAC inhibitor treatment. With these sets of genes, we annotated
the unresponsive DEX genes as either saturated, dominated, or attenuated. Satu-
rated indicates the gene is differentially expressed as a consequence of HDAC
inhibition and in the same direction as the response to DEX alone. Similarly, a gene
was defined as dominated (meaning expression changes were dominated by the
HDAC inhibitor) if the gene is differentially expressed as a consequence of HDAC
inhibition but in the opposite direction as DEX alone. Finally, an unresponsive DEX
gene was classified as attenuated if the expression is not significantly altered by
HDAC inhibition alone, but nonetheless incapable of responding to DEX
after HDACi.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Raw and processed data used in this study have been deposited on GEO under accession
number GSE166470 and available on our GitHub repository (see Code availability).

Code availability
The scripts used for this manuscript are available on Zenodo (https://doi.org/10.5281/
zenodo.6374386) or GitHub at https://github.com/khj3017/hash_ladder.
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